Geometry-based automated recognition of objects on satellite images of sub-meter resolution

Описание

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: 9th Computer Science On-line Conference, CSOC 2020

Год издания: 2020

Идентификатор DOI: 10.1007/978-3-030-51974-2_36

Ключевые слова: image processing, satellite monitoring, sub-meter resolution

Аннотация: The paper considers an algorithm for automated classification of mobile small size objects on multispectral satellite images of submeter spatial resolution using radiometric and geometric features. It ensures recognizing the desired classes of objects with high accuracy regardless of their orientation in the image. The geometric feПоказать полностьюatures of the objects classified in the binary image included the area of the object, the lengths of the principal and auxiliary axes of inertia, the eccentricity of the ellipse with the main moments of inertia, the area of a convex polygon described near the object, the equivalent diameter of a circle with the same area, and the convexity coefficient. © Springer Nature Switzerland AG 2020.

Ссылки на полный текст

Издание

Журнал: Advances in Intelligent Systems and Computing

Выпуск журнала: Vol. 1226 AISC

Номера страниц: 371-379

ISSN журнала: 21945357

Авторы

  • Mozgovoy D.K. (Oles Honchar Dnipro National University, 72, Gagarin Prospect, Dnipro, 49000, Ukraine)
  • Kapulin D.V. (Siberian Federal University, 79, Svobodny Prospect, Krasnoyarsk, 660041, Russian Federation)
  • Svinarenko D.N. (Oles Honchar Dnipro National University, 72, Gagarin Prospect, Dnipro, 49000, Ukraine)
  • Yamskikh T.N. (Siberian Federal University, 79, Svobodny Prospect, Krasnoyarsk, 660041, Russian Federation)
  • Chikizov A.A. (Siberian Federal University, 79, Svobodny Prospect, Krasnoyarsk, 660041, Russian Federation)
  • Tsarev R.Y. (Siberian Federal University, 79, Svobodny Prospect, Krasnoyarsk, 660041, Russian Federation, Krasnoyarsk State Agrarian University, 90, Procpect Mira, Krasnoyarsk, 660049, Russian Federation)

Вхождение в базы данных