The unidirectional motion of two heat-conducting liquids in a flat channel : материалы временных коллективов

Описание

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: All-Russian Conference on Modern Problems of Continuum Mechanics and Explosion Physics Dedicated to the 60th Anniversary of Lavrentyev-Institute-of-Hydrodynamics-SB-RAS; Akademgorodok, RUSSIA; Akademgorodok, RUSSIA

Год издания: 2017

Идентификатор DOI: 10.1088/1742-6596/894/1/012106

Аннотация: The unidirectional motion of two viscous incompressible liquids in a flat channel is studied. Liquids contact on a flat interface. External boundaries are fixed solid walls, on which the non-stationary temperature gradients are given. The motion is induced by a joint action of thermogravitational and thermocapillary forces and giveПоказать полностьюn total non - stationary fluid flow rate in layers. The corresponding initial boundary value problem is conjugate and inverse because the pressure gradients along axes channel have to be determined together with the velocity and temperature field. For this problem the exact stationary solution is found and a priori estimates of non - stationary solutions are obtained. In Laplace images the solution of the non - stationary problem is found in quadratures. It is proved, that the solution converges to a steady regime with time, if the temperature on the walls and the fluid flow rate are stabilized. The numerical calculations for specific liquid media good agree with the theoretical results.

Ссылки на полный текст

Издание

Журнал: ALL-RUSSIAN CONFERENCE WITH INTERNATIONAL PARTICIPATION MODERN PROBLEMS OF CONTINUUM MECHANICS AND EXPLOSION PHYSICS DEDICATED TO THE 60TH ANNIVERSARY OF LAVRENTYEV INSTITUTE OF HYDRODYNAMICS SB RAS

Выпуск журнала: Vol. 894

Номера страниц: 012106

ISSN журнала: 17426588

Место издания: BRISTOL

Издатель: IOP PUBLISHING LTD

Авторы

  • Andreev V.K. (Inst Computat Modelling, Krasnoyarsk, Russia; Siberian Fed Univ, Krasnoyarsk, Russia)
  • Cheremnykh E.N. (Inst Computat Modelling, Krasnoyarsk, Russia; Siberian Fed Univ, Krasnoyarsk, Russia)