Generalized Reduced Mal'tsev Problem on Commutative Subalgebras of E-6 Type Chevalley Algebras over a Field : научное издание

Описание

Тип публикации: статья из журнала

Год издания: 2019

Идентификатор DOI: 10.26516/1997-7670.2019.29.31

Ключевые слова: Chevalley algebra, niltriangular subalgebra, largest dimension commutative subalgebra

Аннотация: In 1905 I. Shur pointed out the largest dimension of commutative subgroups in the groups SL(n, C) and proved that for n > 3 such the subgroups are automorphic to each other. In 1945 A.I. Mal'tsev investigated the problem of description of the largest dime In 1905 I. Shur pointed out the largest dimension of commutative subgroups inПоказать полностьюthe groups SL(n, C) and proved that for n > 3 such the subgroups are automorphic to each other. In 1945 A.I. Mal’tsev investigated the problem of description of the largest dimension commutative subgroups in the simple complex Lie groups. He solved the problem by the transition to the complex Lie algebras and by the reduction to the same problem for the maximal nilpotent subalgebra. Let N be a niltriangular subalgebra of a Chevalley algebra. The article deals with the problem of describing the largest dimension commutative subalgebras of N over an arbitrary field. The solution of this problem is obtained for the subalgebra N of E6 type Chevalley algebra. 2019 Irkutsk State University.

Ссылки на полный текст

Издание

Журнал: BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS

Выпуск журнала: Vol. 29

Номера страниц: 31-38

ISSN журнала: 19977670

Место издания: IRKUTSK

Издатель: IRKUTSK STATE UNIV

Авторы

  • Kirillova E.A. (Siberian Fed Univ, 79 Svobodny Pr, Krasnoyarsk 660041, Russia)

Вхождение в базы данных