Finding Eigenvalues and Eigenfunctions of the Zaremba Problem for the Circle

Описание

Тип публикации: статья из журнала

Год издания: 2017

Идентификатор DOI: 10.1007/s11785-016-0603-y

Ключевые слова: Eigenvalues, Robin condition, Sturm-Liouville problems

Аннотация: We consider Zaremba type boundary value problem for the Laplace operator in the unit circle on the complex plane. Using the theorem on the exponential representation for solutions to equations with constant coefficients we indicate a way to find eigenvalues of the problem and to construct its eigenfunctions. © 2016, Springer InternПоказать полностьюational Publishing.

Ссылки на полный текст

Издание

Журнал: Complex Analysis and Operator Theory

Выпуск журнала: Vol. 11, Is. 4

Номера страниц: 895-926

ISSN журнала: 16618254

Авторы

  • Laptev Ari (Imperial Coll London, Huxley Bldg,180 Queens Gate, London SW7 2AZ, England; Siberian Fed Univ, Inst Math & Comp Sci, Pr Svobodnyi 79, Krasnoyarsk 660041, Russia)
  • Peicheva Anastasiya (Siberian Fed Univ, Inst Math & Comp Sci, Pr Svobodnyi 79, Krasnoyarsk 660041, Russia)
  • Shlapunov Alexander (Siberian Fed Univ, Inst Math & Comp Sci, Pr Svobodnyi 79, Krasnoyarsk 660041, Russia)

Вхождение в базы данных