On strong reality of the unipotent Lie-type subgroups over a field of characteristic 2

Описание

Тип публикации: статья из журнала

Год издания: 2006

Идентификатор DOI: 10.1007/s11202-006-0093-7

Ключевые слова: Lie-type group; unipotent subgroup; regular unipotent element; strongly real element; commutativity graph

Аннотация: A group G is called strongly real if its every nonidentity element is strongly real, i.e. conjugate with its inverse by an involution of G. We address the classical Lie-type groups of rank 1, with l = 13, over an arbitrary field, and the exceptional Lie-type groups over a field K with an element 77 such that the polynomial X-2 + X Показать полностью+ eta is irreducible either in K [X] or K-o [X] (in particular, if K is a finite field). The following question is answered for the groups under study: What unipotent subgroups of the Lie-type groups over a field of characteristic 2 are strongly real?

Ссылки на полный текст

Издание

Журнал: SIBERIAN MATHEMATICAL JOURNAL

Выпуск журнала: Vol. 47, Is. 5

Номера страниц: 844-861

ISSN журнала: 00374466

Место издания: NEW YORK

Издатель: CONSULTANTS BUREAU/SPRINGER

Авторы

Вхождение в базы данных