Самоконфигурируемый ансамбль генетических алгоритмов для решения задач мультимодальной оптимизации : научное издание

Описание

Перевод названия: Self-configuring ensemble of genetic algorithms for multimodal optimization problems

Тип публикации: статья из журнала

Год издания: 2015

Ключевые слова: самоконфигурирование, метод ниш, self-configuration, Niching, Multimodal optimization, genetic algorithm, metaheuristic, мультимодальная оптимизация, генетический алгоритм, метаэвристика

Аннотация: Задача мультимодальной оптимизации (ММО) заключается в нахождении множества всех глобальных и локальных оптимумов или аппроксимации этого множества. В последние годы было предложено множество эффективных бионических и эволюционных алгоритмов для ММО с вещественными переменными (в частности, на базе алгоритмов эволюционных стратегийПоказать полностью, роя частиц (PSO), дифференциальной эволюции и др.). В то же время, многие практические задачи оптимизации часто содержат переменные нескольких разных типов, включая целочисленные, ранговые, бинарные и др. В таком случае переменные переводятся в наиболее слабую из шкал, обычно используется бинарное представление решений. К сожалению, сегодня достаточно эффективных подходов для ММО с бинарным представлением не предложено. Существующие решения в основном базируются на общих идеях метода ниш (niching). Более того, возникает проблема выбора подходящего алгоритма и тонкой настройки его параметров под конкретную задачу ММО. Предложен новый подход, основанный на метаэвристике для построения генетического алгоритма, включающего многие стратегии поиска. Предложенный подход позволяет управлять взаимодействием нескольких поисковых алгоритмов (разных генетических алгоритмов для ММО) и обеспечивает самоконфигурируемое решение задачи с априори неизвестной структурой (оптимизация «черного ящика»). Представлены результаты численных экспериментов и сравнение с другими известными подходами на множестве традиционных тестовых задач ММО и задачах, предложенных на конкурсе по ММО в рамках конференции CEC’2013. Предложенный подход демонстрирует эффективность лучшую, чем стандартные подходы, основанные на идее ниш, и сравнимую с современными усовершенствованными алгоритмами. Особенностью и преимуществом предложенного подхода является то, что он не требует привлечения дополнительных экспертных знаний, так как работает в автоматизированном, самоконфигурируемом режиме.

Ссылки на полный текст

Издание

Журнал: Вестник Сибирского государственного аэрокосмического университета им. академика М.Ф. Решетнева

Выпуск журнала: Т. 16, 4

Номера страниц: 833-841

ISSN журнала: 18169724

Место издания: Красноярск

Издатель: Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева

Авторы

  • Сопов Е.А. (Российская Федерация, 660037, г. Красноярск, просп. им. газ. «Красноярский рабочий», 31)
  • Аплеснин С.С. (Российская Федерация, 660037, г. Красноярск, просп. им. газ. «Красноярский рабочий», 31)

Вхождение в базы данных