Тип публикации: статья из журнала
Год издания: 2020
Идентификатор DOI: 10.1016/j.jpaa.2020.106337
Ключевые слова: Nilpotent algebra; Anticommutative algebra; Algebraic classification; Geometric classification, algebraic classification, anticommutative algebra, geometric classification, nilpotent algebra
Аннотация: We give algebraic and geometric classifications of 6-dimensional complex nilpotent anticommutative algebras. Specifically, we find that, up to isomorphism, there are 14 one-parameter families of 6-dimensional nilpotent anticommutative algebras, complemented by 130 additional isomorphism classes. The corresponding geometric variety Показать полностьюis irreducible and determined by the Zariski closure of a one-parameter family of algebras. In particular, there are no rigid 6-dimensional complex nilpotent anticommutative algebras. (C) 2020 Elsevier B.V. All rights reserved.
Журнал: JOURNAL OF PURE AND APPLIED ALGEBRA
Выпуск журнала: vol. 224, Is. 8
ISSN журнала: 00224049
Место издания: AMSTERDAM
Издатель: ELSEVIER