The algebraic and geometric classification of nilpotent anticommutative algebras : научное издание

Описание

Тип публикации: статья из журнала

Год издания: 2020

Идентификатор DOI: 10.1016/j.jpaa.2020.106337

Ключевые слова: Nilpotent algebra; Anticommutative algebra; Algebraic classification; Geometric classification, algebraic classification, anticommutative algebra, geometric classification, nilpotent algebra

Аннотация: We give algebraic and geometric classifications of 6-dimensional complex nilpotent anticommutative algebras. Specifically, we find that, up to isomorphism, there are 14 one-parameter families of 6-dimensional nilpotent anticommutative algebras, complemented by 130 additional isomorphism classes. The corresponding geometric variety Показать полностьюis irreducible and determined by the Zariski closure of a one-parameter family of algebras. In particular, there are no rigid 6-dimensional complex nilpotent anticommutative algebras. (C) 2020 Elsevier B.V. All rights reserved.

Ссылки на полный текст

Издание

Журнал: JOURNAL OF PURE AND APPLIED ALGEBRA

Выпуск журнала: vol. 224, Is. 8

ISSN журнала: 00224049

Место издания: AMSTERDAM

Издатель: ELSEVIER

Персоны

  • Kaygorodov Ivan (Univ Fed ABC, CMCC, Santo Andre, SP, Brazil; Siberian Fed Univ, Krasnoyarsk, Russia)
  • Khrypchenko Mykola (Univ Fed Santa Catarina, Dept Matemat, Florianopolis, SC, Brazil; Univ Nova Lisboa, Fac Ciencias & Tecnol, Ctr Matemat & Aplicacoes, Caparica, Portugal)
  • Lopes Samuel A. (Univ Porto, Fac Ciencias, CMUP, Rua Campo Alegre 687, P-4169007 Porto, Portugal)