Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций
Конференция: International Conference on Application of Mathematics in Technical and Natural Sciences (AMiTaNS); Albena, BULGARIA; Albena, BULGARIA
Год издания: 2015
Идентификатор DOI: 10.1063/1.4934334
Аннотация: The two-dimensional time-dependent Navier-Stokes equations are considered for a viscous incompressible fluid in a channel. On the outlet boundary, the modified "do nothing" condition is imposed. To construct a discrete analogue, a semi-Lagrangian approximation of the transport derivatives is used in combination with the conforming Показать полностьюfinite element method for the approximation of other terms. The velocity components are approximated by biquadratic elements and the pressure is approximated by bilinear elements on rectangles. As a result of this combined approximation, the stationary problem with a self-adjoint operator is obtained at each time level. The theoretical results are confirmed by numerical experiments.
Журнал: APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS'15)
Выпуск журнала: Vol. 1684
ISSN журнала: 0094243X
Место издания: MELVILLE
Издатель: AMER INST PHYSICS