Тип публикации: статья из журнала
Год издания: 2001
Аннотация: We look into methods which make it possible to determine whether or not the modal logics under examination are residually finite w.r.t. admissible inference rules. A general condition is specified which states that modal logics over mathK4/math are not residually finite w.r.t. admissibility. It is shown that all modal logics math\lПоказать полностьюambda/math over mathK4/math of width strictly more than 2 which have the co-covering property fail to be residually finite w.r.t. admissible inference rules; in particular, such are mathK4/math, mathGL/math, mathK4.1/math, mathK4.2/math, mathS4.1/math, mathS4.2/math, and mathGL.2/math. It is proved that all logics math\lambda/math over mathS4/math of width at most 2, which are not sublogics of three special table logics, possess the property of being residually finite w.r.t. admissibility. A number of open questions are set up.
Журнал: Algebra and Logic
Выпуск журнала: Т. 40, № 5
Номера страниц: 334-347
ISSN журнала: 00025232
Место издания: Новосибирск
Издатель: Springer New York Consultants Bureau