On a creeping 3d convective motion of fluids with an isothermal interface

Описание

Тип публикации: статья из журнала

Год издания: 2020

Идентификатор DOI: 10.17516/1997-1397-2020-13-6-661-669

Ключевые слова: creeping flow, interphase energy, inverse problem, oberbek-boussinesq model

Аннотация: In the work the 3D two-layer motion of liquids, the velocity field of which has a special form, is considered. The arising conjugate initial boundary value problem for the Oberbek–Boussinesq model is reduced to a system of ten integrodifferential equations with full conditions on a flat interface. It is shown that for small MarangoПоказать полностьюni numbers the stationary problem can have up to two solutions. The case when the stationary flow arises due to a change in the internal interphase energy is analyzed separately. © Siberian Federal University. All rights reserved.

Ссылки на полный текст

Издание

Журнал: Journal of Siberian Federal University - Mathematics and Physics

Выпуск журнала: Vol. 13, Is. 6

Номера страниц: 661-669

ISSN журнала: 19971397

Издатель: Siberian Federal University

Персоны

  • Andreev Viktor K. (Inst Computat Modelling SB RAS, Krasnoyarsk, Russia; Siberian Fed Univ, Krasnoyarsk, Russia)