Fault Tree logical-Probabilistic Method of Wind-Diesel Complex Reliability Analysis : материалы временных коллективов

Описание

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: International Ural Conference on Green Energy (UralCon); S Ural State Univ, Chelyabinsk, RUSSIA; S Ural State Univ, Chelyabinsk, RUSSIA

Год издания: 2018

Ключевые слова: wind-diesel complex, dynamic logical operators, reliability assessment, Electric power systems, Electric power transmission networks, Fault tree analysis, Stochastic systems, Wind, Wind power, Dynamic management, Electric installations, Electric power supply, Logical operators, Probabilistic methods, Reliability assessments

Аннотация: The reliability analysis of off-grid electric power supply systems basing on renewables is the relevant practical task requiring the solution. However, there are a number of problems bounding on stochastic character of natural resources in the reliability analysis of electric installations with such energy sources. The operating ofПоказать полностьюthe wind power installations applied in the off-grid power supply systems depends on the potential of the wind resources with a variable character. The logical-probabilistic method of a fault tree allowing to consider changes of wind speed, to use the dynamic operators reflecting dependence of serial events of elements' failures and dynamic management of reservation is offered in this article for the reliability analysis of the wind-diesel complex. The reliability research of the wind-diesel complex functioning in the system of independent power supply of the settlement in the northern parts of Krasnoyarsk territory is made by means of the offered method.

Ссылки на полный текст

Издание

Журнал: 2018 INTERNATIONAL URAL CONFERENCE ON GREEN ENERGY (URALCON)

Номера страниц: 39-44

Место издания: NEW YORK

Издатель: IEEE

Персоны

  • Tremyasov Vladimir (Siberian Fed Univ, Krasnoyarsk, Russia)
  • Bobrov Aleksey (Siberian Fed Univ, Krasnoyarsk, Russia)
  • Krivenko Tatiana (Siberian Fed Univ, Krasnoyarsk, Russia)