Тип публикации: статья из журнала
Год издания: 2016
Идентификатор DOI: 10.1134/S0021894416040027
Ключевые слова: two-layer flows, Oberbeck-Boussinesq equations, evaporation, linear stability, long-wavelength asymptotic, longwavelength asymptotic, Oberbeck–Boussinesq equations, Flow of gases, Flow patterns, Fluid dynamics, Heat convection, Phase interfaces, Thermodynamic stability, Boussinesq approximations, Boussinesq equations, Flow charac-teristics, Long wavelength, Thermal instabilities, Viscous incompressible fluids, Flow of fluids
Аннотация: The problem of two-layer convective flow of viscous incompressible fluids in a horizontal channel with solid walls in the presence of evaporation is considered in the Oberbeck-Boussinesq approximation assuming that the interface is an undeformable thermocapillary surface and taking into account the Dufour effect in the upper layer Показать полностьюwhich is a mixture of gas and liquid vapor. The effects of longitudinal temperature gradients at the boundaries of the channel and the thicknesses of the layer on the flow pattern and the evaporation rate are studied under conditions of specified gas flow and the absence of vapor flow on the upper boundary of the channel. It is shown that the long-wavelength asymptotics for the decrement is determined from the flow characteristics, the longwavelength perturbations occurring in the system decay monotonically, and the thermal instability mechanism is not potentially the most dangerous.
Журнал: JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS
Выпуск журнала: Vol. 57, Is. 4
Номера страниц: 588-595
ISSN журнала: 00218944
Место издания: NEW YORK
Издатель: MAIK NAUKA/INTERPERIODICA/SPRINGER