Difference schemes for second-order ordinary differential equations with corrector and predictor properties

Описание

Тип публикации: статья из журнала

Год издания: 2022

Идентификатор DOI: 10.1515/rnam-2022-0015

Ключевые слова: explicit difference schemes, predictor-corrector algorithms, second order ordinary differential equations, störmer method

Аннотация: A technique for constructing a sequence of difference schemes with the properties of a corrector and a predictor for integrating systems of the second-order ordinary differential equations is presented. The sequence of schemes begins with the explicit three-point Störmer method of the second order of approximation. Each subsequent Показать полностьюscheme also implements the Störmer method corrected with additional terms calculated through the solution of the previous scheme. The stability of the resulting schemes and the increase in the order of convergence for the first of them are carefully substantiated. The results of calculations of the test problem are presented, confirming the increase in the order of accuracy of the constructed methods. © 2022 Walter de Gruyter GmbH, Berlin/Boston.

Ссылки на полный текст

Издание

Журнал: Russian Journal of Numerical Analysis and Mathematical Modelling

Выпуск журнала: Vol. 37, Is. 3

Номера страниц: 175-187

ISSN журнала: 09276467

Издатель: De Gruyter Open Ltd

Персоны

  • Shaidurov V.V. (Institute of Computational Modelling, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation)
  • Novikov A.E. (Siberian Federal University, Krasnoyarsk, 660041, Russian Federation)

Вхождение в базы данных