Autonomous on-board object and phenomenon detection system : доклад, тезисы доклада

Описание

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: Hybrid Methods of Modeling and Optimization in Complex Systems (HMMOCS-III 2024); Krasnoyarsk; Krasnoyarsk

Год издания: 2025

Идентификатор DOI: 10.1051/itmconf/20257203010

Аннотация: This paper presents the design, implementation, and evaluation of an autonomous on-board object and phenomenon detection system optimized for real-time performance and resource-constrained environments. The proposed framework integrates a multimodal sensor array, including RGB cameras and LiDAR, with lightweight deep learning algorПоказать полностьюithms for object detection, tracking, and classification. Four state-of-the-art detection models - YOLO, DETR, CenterNet, and M2Det - were examined using the Lacmus Drone Dataset, a publicly available collection of over 3,000 aerial images. Experimental results highlight that no single model consistently outperforms the others: YOLO excels in real-time scenarios due to its fast inference speed, whereas DETR achieves the highest accuracy at the expense of greater computational complexity. CenterNet offers a balanced approach for detecting smaller objects, and M2Det demonstrates strong performance in densely populated urban scenes. Overall, these findings emphasize the importance of selecting model architectures based on mission requirements and hardware constraints, paving the way for more efficient and adaptive autonomous detection systems.

Ссылки на полный текст

Издание

Журнал: ITM Web of Conferences

Номера страниц: 3010

Место издания: Krasnoyarsk

Персоны

  • Mikhalev Anton (Siberian Federal University)
  • Guliutin Nikolai (Siberian Federal University)
  • Ermienko Nadezhda (Siberian Federal University)
  • Antamoshkin Oleslav (Reshetnev Siberian State University of Science and Technology)

Вхождение в базы данных