Перевод названия: Calculation of upper bounds for graph vertex integrity based on the minimal separators
Тип публикации: статья из журнала
Год издания: 2015
Идентификатор DOI: 10.17223/2226308X/8/55
Ключевые слова: Graph algorithms, graph vertex integrity, minimum separators, алгоритмы на графах, вершинная целостность графа, минимальные сепараторы
Аннотация: Рассматривается трудно вычисляемый числовой параметр графа, называемый вершинной целостностью и используемый в анализе и синтезе отказоустойчивых сложных технических систем. Для нахождения данного параметра необходимо знание всех сепараторов исходного графа. Предлагается алгоритм, который ограничивается построением и анализом толькПоказать полностьюо всех минимальных сепараторов. Поэтому алгоритм даёт верхнюю оценку вершинной целостности графа. Вычислительная сложность предлагаемого алгоритма полиноминально зависит от числа вершин и числа минимальных сепараторов графа. Результаты экспериментов показали, что вычисленные оценки являются хорошими и часто достижимыми. A vertex integrity of a graph is a generalization of a connectivity notion. It is believed that a graph is more integral if the connectivity of this graph is broken when you delete a larger number of vertices and the effect of these deletions is minimal. Measures of the integrity are introduced to use in the analysis and synthesis of fault-tolerant complex technical systems. One of such measure is a numerical parameter of the graph called the vertex integrity. The evaluation problem for this parameter is NP-hard. Let G = (V, E) be a simple connected graph, V be a set of vertices and E be a set of edges, n = |V|. The vertex integrity of G is calculated by the formula I (G) = min {|S| + w (G - S)} where w(H) is the order of the largest connected component of a graph H. The minimum value is reached when S is a separator. Therefore, it is necessary to know all separators of the original graph. An algorithm, which constructs and analyses only all minimal separators, is proposed. This algorithm gives an upper bound for the vertex integrity of the graph. In the first stage, the algorithm computes the set M of all minimal separators of the graph G using a necessary and sufficient condition. The complexity of this stage polynomially depends on the number of vertices of the graph, namely O(n 3). In the second stage, each separator in M is substituted into the objective function to find the vertex integrity. The computational complexity of this stage linearly depends on the cardinality of M. The experimental results show that the calculated estimates are good and often achievable.
Журнал: Прикладная дискретная математика. Приложение
Выпуск журнала: № 8
Номера страниц: 142-144
ISSN журнала: 2226308X
Место издания: Томск
Издатель: Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Национальный исследовательский Томский государственный университет