Predicting Tilapia Productivity in Geothermal Ponds: A Genetic Algorithm Approach for Sustainable Aquaculture Practices : научное издание

Описание

Тип публикации: статья из журнала

Год издания: 2024

Идентификатор DOI: 10.3390/su16219276

Аннотация: <jats:p>This study presents a case focused on sustainable farming practices, specifically the cultivation of tilapia (Mozambican and aureus species) in ponds with geothermal water. This research aims to optimize the hydrochemical regime of experimental ponds to enhance the growth metrics and external characteristics of tilapia breeПоказать полностьюders. The dataset encompasses the hydrochemical parameters and the fish feeding base from experimental geothermal ponds where tilapia were cultivated. Genetic algorithms (GA) were employed for hyperparameter optimization (HPO) of deep neural networks (DNN) to enhance the prediction of fish productivity in each pond under varying conditions, achieving an R2 score of 0.94. This GA-driven HPO process is a robust method for optimizing aquaculture practices by accurately predicting how different pond conditions and feed bases influence the productivity of tilapia. By accurately determining these factors, the model promotes sustainable practices, improving breeding outcomes and maximizing productivity in tilapia aquaculture. This approach can also be applied to other aquaculture systems, enhancing efficiency and sustainability across various species.</jats:p>

Ссылки на полный текст

Издание

Журнал: Sustainability

Выпуск журнала: Т. 16, 21

Номера страниц: 9276

ISSN журнала: 20711050

Персоны

  • Tynchenko Vadim (Information-Control Systems Department, Reshetnev Siberian State University of Science and Technology, 660037 Krasnoyarsk, Russia)
  • Kukartseva Oksana (Laboratory of Biofuel Compositions, Siberian Federal University, 660041 Krasnoyarsk, Russia)
  • Tynchenko Yadviga (Laboratory of Biofuel Compositions, Siberian Federal University, 660041 Krasnoyarsk, Russia)
  • Kukartsev Vladislav (Department of Information Economic Systems, Reshetnev Siberian State University of Science and Technology, 660037 Krasnoyarsk, Russia)
  • Panfilova Tatyana (Department of Technological Machines and Equipment of Oil and Gas Complex, Siberian Federal University, 660041 Krasnoyarsk, Russia)
  • Kravtsov Kirill (Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia)
  • Wu Xiaogang (School of Electrical Engineering, Hebei University of Technology, Tianjin 300401, China)
  • Malashin Ivan (Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, 105005 Moscow, Russia)

Вхождение в базы данных