Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций
Конференция: Proceedings of Ninth International Congress on Information and Communication Technology ICICT 2024; London; London
Год издания: 2024
Идентификатор DOI: 10.1007/978-981-97-3562-4_45
Ключевые слова: neural networks, machine learning, data analysis, model configuration, activation function, resilient propagation, Parameter optimisation
Аннотация: In the dynamic landscape of contemporary organisations, employee retention emerges as a pivotal factor for stability and successful development. This study focuses on the application of neural networks to analyse factors influencing employees' decisions to stay or leave a company. Utilising an anonymized dataset encompassing educatПоказать полностьюion, work experience, demographics, and employment history, various neural network configurations were explored, adjusting the number of layers and neurons while maintaining consistent parameters like sigmoid activation function and Resilient Propagation algorithm. The research revealed a noteworthy trend: an increase in the number of neurons enhances model performance, yet saturation occurs beyond a certain point. The model with a single hidden layer and 64 neurons exhibited optimal results, striking a balance between model complexity and prevention of overfitting. Beyond model error, crucial steps like cross-validation and optimal hyperparameter tuning are discussed to ensure a robust analysis. The study concludes by providing a foundation for future work in employee attrition prediction, emphasising the significance of a unified approach for model comparison.
Выпуск журнала: 1002-6
Номера страниц: 575-586
Место издания: Singapore