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Abstract

Background: Massive forest decline has been observed almost everywhere as a result of negative anthropogenic
and climatic effects, which can interact with pests, fungi and other phytopathogens and aggravate their effects.
Climatic changes can weaken trees and make fungi, such as Armillaria more destructive. Armillaria borealis (Marxm.
& Korhonen) is a fungus from the Physalacriaceae family (Basidiomycota) widely distributed in Eurasia, including
Siberia and the Far East. Species from this genus cause the root white rot disease that weakens and often kills
woody plants. However, little is known about ecological behavior and genetics of A. borealis. According to field
research data, A. borealis is less pathogenic than A. ostoyae, and its aggressive behavior is quite rare. Mainly A.
borealis behaves as a secondary pathogen killing trees already weakened by other factors. However, changing
environment might cause unpredictable effects in fungus behavior.

Results: The de novo genome assembly and annotation were performed for the A. borealis species for the first
time and presented in this study. The A. borealis genome assembly contained ~ 68 Mbp and was comparable with
~ 60 and ~ 79.5 Mbp for the A. ostoyae and A. mellea genomes, respectively. The N50 for contigs equaled 50,544 bp.
Functional annotation analysis revealed 21,969 protein coding genes and provided data for further comparative
analysis. Repetitive sequences were also identified. The main focus for further study and comparative analysis will
be on the enzymes and regulatory factors associated with pathogenicity.
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Conclusions: Pathogenic fungi such as Armillaria are currently one of the main problems in forest conservation. A
comprehensive study of these species and their pathogenicity is of great importance and needs good genomic
resources. The assembled genome of A. borealis presented in this study is of sufficiently good quality for further
detailed comparative study on the composition of enzymes in other Armillaria species. There is also a fundamental
problem with the identification and classification of species of the Armillaria genus, where the study of repetitive
sequences in the genomes of basidiomycetes and their comparative analysis will help us identify more accurately
taxonomy of these species and reveal their evolutionary relationships.
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Background
Massive forest decline as a result of negative anthropo-
genic and climatic effects, often aggravated by pests,
fungi, and other phytopathogens, has been observed
almost everywhere. Environmental changes, such as in-
creased average annual temperatures, decreased precipi-
tation, more frequent droughts, can weaken trees and
make fungi much more destructive. Forest conservation
has become a serious issue since the scale of plant death
caused by phytopathogenic fungi is enormous. For in-
stance, tree diseases have caused the loss of approxi-
mately 100 million elm trees in the United Kingdom and
the United States, and the list can be continued. Among
all phytopathogens, fungi cause 64% of infection-related
species extinction and regional extirpation events [1].
The basidiomycete genus Armillaria plays a very

important role in forest ecosystems worldwide and cur-
rently includes more than 40 officially described species
[2, 3]. Armillaria species differ significantly in virulence,
for example, some species, such as A. ostoyae, are the
main cause of tree death while other species colonize
plants already damaged by various factors (drought,
pests, etc.) [4, 5]. Difference in pathogenicity has also
been observed in A. ostoyae, however virulence variation
of A. borealis has not been studied yet [6].
Armillaria borealis (Marxm. & Korhonen) is a fungus

from the Physalacriaceae family (Basidiomycota) widely
distributed in Eurasia, including Siberia and the Far East
[1]. Species from this genus cause the root white rot
disease that weakens and often kills woody plants [7].
Several phylogenetic and genomic studies on A. ostoyae
have been carried out due to its high pathogenic poten-
tial and common occurrence [4, 8, 9], while little is
known about ecological behavior of A. borealis. Accord-
ing to field research data, A. borealis is less pathogenic
than A. ostoyae, and its aggressive behavior is rare.
Mainly A. borealis behaves as a secondary pathogen kill-
ing trees already weakened by biotic and abiotic factors
[10–13]. However, changing environment might cause
unpredictable effects in fungi behavior.
Armillaria spp. impact on forest populations has both

economic and ecological significance. They attack hundreds

of different tree species (e.g., Abies, Picea, Pinus, Betula,
Sorbus, Juglans, Malus, etc.) in both hemispheres under
different climatic conditions, and are among the most
destructive forest pathogens [2, 14, 15].
Identification of species and pathogenicity levels of

Armillaria is crucial for forest conservation. The genomic
data are needed to study the pathogenicity of pathogenic
species and to better understand their impact on trees and
the host-pathogen interactions. In addition, comparative
genomics can help to resolve complex phylogeny of
Armillaria species. It is worth noting that fungi genomic
data are also important for industrial applications. For
example, white rot Armillaria fungi are capable of lignin
and cellulose decomposition, and they can be used to
utilize the wood and paper production waste [16].
A. borealis is very important for the vast boreal forest

ecosystems. However, despite the enormous influence of
Armillaria species on forestry, horticulture, and agricul-
ture, fungi of this genus and their pathogenicity are still
not well-studied in this large region, which makes the
presented genomic study very much needed.
There are already published genomic and proteomic

data for A. mellea, A. solidipes, and A. ostoyae revealing
the presence of plant cell wall degradation enzymes
(PCWDE) and some secreted proteins [17–19]. Genomic
analysis of other pathogenic basidiomycetes, such as
Moniliophthora [20, 21], Heterobasidion [22], and Rhizoc-
tonia [23], also revealed genes encoding PCWDE, as well
as secreted enzymes and secondary metabolism effector
proteins as putative pathogenicity factors. However, the
life cycle and the distribution strategy of Armillaria mem-
bers indicate that they may have evolved other additional
mechanisms for pathogenicity, which along with other
potential genomic mechanisms are not yet studied [24]. It
is worth noting that the role and functional significance of
mobile and highly repetitive elements (REs) are still not
completely clear. Gradually accumulated data suggest that
REs can play an important role in the evolutionary
development of organisms, replication, and formation of
nucleoprotein complexes, as well as affect gene expression
[17]. Genomes of fungi are densely packed containing
effector genes and transposable elements (TEs) [25–27]. It
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was reported that different fungal pathogens, such as
Fusarium [28] and Verticillium [29], have similar genome
architecture. So, it is expected that TEs may play import-
ant roles in host switching and adaptation to new eco-
logical niches [30]. It was found in Magnaporthe oryzae
that genes involved in host specialization were associated
with TEs [31].

Results
Genome assembly
The A. borealis genome assembly contained ~ 67 Mbp
and was comparable with ~ 60 and ~ 79.5 Mbp for the
A. ostoyae and A. mellea genomes, respectively. The N50
for contigs equaled 50,554 bp (Table 1).

Completeness of the genome assembly
The BUSCO v3.1.0 software [32] was used to evaluate
the completeness of the genome assembly. It showed
that 94.7% of reference genes were captured as complete
single-copy genes (Table 2). In addition, the RNA
sequence reads were mapped to the genome assembly by
TopHat v. 2.1.0 [33].

Content of the RNA-seq reads
The SortMeRNA v2.1 program [34] with the pre-installed
eight rRNA databases (silva-bac-16 s-id90, silva-arc-16 s-
id95, silva-euk-18 s-id95, silva-bac-23 s-id98, silva-arc-23 s-
id98, silva-euk-28 s-id98, rfam-5 s-id98, and rfam-5.8 s-id98)
from the SILVA rRNA database project (SILVA SSU and
LSU Ref NR v.119; https://www.arb-silva.de) was used to
check the content of the RNA sequences. The results are
presented in Table 3. Both RNA samples contained high
number of rRNA reads – 32.5 and 72.9%, respectively.

Genome gene annotation
Functional annotation revealed 21,969 protein coding
genes, which was also comparable with 22,705 and 14,
473 genes in A. ostoyae and A. mellea, respectively.
Their gene ontology (GO) functional annotation is
presented in Fig. 1 and Additional files 1, 2 and 3. The
greatest number of annotated sequences was related to
the functioning of the cell nucleus (Fig. 1).
The distribution of enzyme genes across main classes

is represented in Fig. 2. Oxidoreductases and hydrolases
were among the most abundant enzymes.

Repetitive element (RE) annotation
In total, 886 RE sequences were identified in the A.
borealis genome assembly. However, 839 (94.7%) of
them remained unrecognized based on the initial classi-
fication using RepeatModeler program (Table 4).
The following RE types were identified: LTR retrotran-

sposons (Copia, Gypsy, Pao), LINE-retrotransposons
(Tad1), and retrotransposons with a tyrosine recombin-
ase (Ngaro).
The TEclass classifier software allowed us to further

partition sequences including initially unclassified into
four main groups (Table 5). The additional comparative
studies of repetitive sequences in the genomes of basid-
iomycetes are needed to further classify REs. The variety
of the detected TE families was not very wide, excep the
LTR TE family, which was widely represented in
A. borealis. The Ty3/Gypsy and Ty1/Copia elements
have been identified, and Gypsy was the most abundant
among them.

Discussion
Typical fungal nuclear genome sizes occupy an intermedi-
ate position between prokaryotes and other eukaryotes.
On average, the size of the fungal genome is two orders of
magnitude smaller than that of higher plants and varies
from ~ 2.19 to ~ 3706 Mbp ( [35], see also DOE JGI Fungi
Portal: https://mycocosm.jgi.doe.gov/mycocosm/home).
The average genome size of Ascomycota and Basidiomy-
cota divisions is ~ 36.91 and ~ 46.48Mb, respectively [36].
The genome size of A. borealis (~ 66.79 Mbp) was within
a range of genome sizes in closely related species. For
example, the genomes of A. ostoyae and A. mellea
were ~ 60 and ~ 79.5 Mbp, respectively [19, 37].
The genome sizes of our assembly and draft assembly

of Armillaria borealis FPL87.14 v1.0 available in the US
DoE JGI fungal genomics resource database (https://
mycocosm.jgi.doe.gov/Armbor1) are quite comparable,

Table 1 Assembly parameters of the Armillaria borealis genome

Parameter Contig

Number 44,412

Total length, bp 66,792,428

Maximum length, bp 2,136,877

N50, bp 50,544

N90, bp 346

Table 2 Results of the Armillaria borealis genome assembly
assessment using BUSCO

Genes Number Percentage

Complete (single-copy) 1286 96.3 (94.7)

Fragmented 17 1.3

Missing 32 2.4

Total number 1335 100

Table 3 Content of the RNA-seq reads

Parameter Sample 1 Sample 2

Total number of reads (%) 6,428,260 (100%) 8,444,300 (100%)

Number of non-rRNA reads (%) 4,339,634 (67.5%) 2,288,932 (27.1%)

Number of rRNA reads (%) 2,088,626 (32.5%) 6,155,368 (72.9%)

Average read length, bp 153 151
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Fig. 1 Distribution of 21,969 protein coding genes found in the Armillaria borealis genome assembly at the three levels - molecular function (MF),
biological processes (BP), and cellular components (CC), respectively, based on the GO functional annotation

Fig. 2 Distribution of enzyme genes found in the Armillaria borealis genome assembly across main classes
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~ 66.8 vs. ~ 71.69 Mbp, respectively. The difference can
be explained by the use of different sequencing tech-
nologies (Illumina MiSeq vs. PacBio) that resulted in sig-
nificant differences in the number of scaffolds between
two assemblies but did not influence much the number
of coding sequences identified, 21,969 coding sequences
in our assembly vs. 19,984 in Armillaria borealis
FPL87.14 v1.0. Meanwhile, the genome size of A. gallica
[19] is almost 19 Mbp bigger than in A. borealis. The
number of genes identified in the A. gallica genome was
also larger (~ 25,000 genes).
Enzymatic activities of plant cell wall degrading fungi

are performed by complex mixtures of cellulases,
hemicellulases, and ligninases [38]. Oxidoreductases and
hydrolases are the most interesting among enzymes in
Armillaria because they are involved in lignin (oxidore-
ductases) and cellulose (hydrolases) decomposition.
Among identified TE classes LTR elements were the

most frequent, particularly in basidiomycete fungi [39]. It
is also true for A. borealis. The effect of TE on lifestyle of
white-rot fungi has not been studied in depth yet, but
some studies revealed considerable difference in TE num-
ber among different Armillaria species [19]. Their detailed
comparative analysis will be presented in a separate paper.

Conclusions
The destruction of forests by pathogenic fungi is one of
the main problems of forest conservation. Further
comprehensive studies of these fungi at genomic, transcrip-
tomic, proteomic, and metabolomic levels are very much
needed to identify causes and mechanisms of their increas-
ing pathogenicity. Our study provides important genomic
resources of sufficiently good quality for further detailed
work on studying the genetics of pathogenicity of Armil-
laria and other fungi species. It should also help with in-
depth evolutionary and phylogenomic analyses and better
identification and classification of Armillaria species genus.

Methods
Sample collection and DNA sequencing
The active mycelia of A. borealis were collected from
dead trees of Abies sibirica in 2015 in a mixed forest
consisted mainly of Siberian fir, silver birch, Norway
spruce, and Siberian stone pine and located 40 km to the
northwest of Krasnoyarsk City, Russia (56.175847°N,
92.184933°E). The fresh mycelium was isolated from
under the bark of the infested stems 50 cm above the
soil surface using sterile tweezers and gloves to avoid
contamination. Before DNA extraction, mycelium was
fixed for 2 days at 4°С in RNAlater (Thermo Fisher
Scientific Company, Waltham, Massachusetts, USA).
Then RNAlater fixed mycelium was quickly ground in
acid-washed and autoclaved mortar. DNA was isolated
using a modified version of the hot-CTAB extraction at
65 °C [40], followed by chloroform (double washing).
Total DNA was precipitated for an hour with isopropanol at
4 °C, centrifuged at 6500 g for 30min at 4 °C, washed twice
with 70% ethanol, and was eluted in 50 μl nuclease-free
water. Integrity and amount of the isolated total DNA were
examined by 1.5% (wt/vol) agarose gel electrophoresis, and
using the NanoDrop 1000 Spectrophotometer (Thermo
Fisher Scientific Company, Waltham, Massachusetts, USA).
The amount of extracted DNA was also measured on the
Invitrogen Qubit 4 Fluorometer (Thermo Fisher Scientific
Company, Waltham, Massachusetts, USA).
The paired-end sequencing libraries with 500 bp long

genomic DNA inserts were generated using Truseq
DNA Sample Prep Kit according to the manufacturer’s
instructions (Illumina, Inc., San Diego, CA, USA). MiSeq
Reagent Kit v2 (500-cycles) was used to sequence on the
Illumina MiSeq platform with 2 × 250 cycles at the
Laboratory of Forest Genomics of Siberian Federal
University (Genome Research and Education Center,
Siberian Federal University, Krasnoyarsk, Russia).

RNA isolation and sequencing
Two samples were isolated from the active A. borealis
mycelium from two dead trees of Abies sibirica, respect-
ively, in 2015 and fixed for 2 days at 4°С in RNAlater

Table 4 Initial classification of the repetitive elements (REs)
identified in the A. borealis genome assembly

RE type RE family Number

LTR retrotransposons Copia 5

Gypsy 32

Pao 1

LINE-retrotransposons Tad1 5

Retrotransposons with a tyrosine
recombinase (YR)

Ngaro 3

Simple sequence repeats Simple Repeats 1

Classified 47 (5.3%)

Unclassified 839 (94.7%)

Total 886

Table 5 Additional classification based on TEclass including
initially unclassified repetitive elements (REs) identified in the
A. borealis genome assembly

RE type Number %

DNA-transposons 79 9

Retrotransposons:

LTR 735 83

LINE 27 3

Unclear 18 2

Total 886 100
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(Thermo Fisher Scientific Company, Waltham, Massa-
chusetts, USA). The distance between the trees was
2–10m. The RNA was isolated using Qiagen RNeasy Mini
Kit (Qiagen, Valencia, CA, USA).
The quality and concentration of the RNA were

measured on Agilent 2100 Bioanalyzer using Agilent RNA
6000 Nano kit (Agilent Technologies, Inc., Santa Clara,
CA, USA). Purified RNA with high quality was selected
for further cDNA library construction. Purification of
mRNA from total RNA was performed using Oligo (dT)
magnetic beads. The mRNA treated with fragmentation
buffer was used as a template for cDNA synthesis. A
double-stranded cDNA library was constructed with the
TruSeq RNA Library Prep Kit v2 (Illumina, Inc., San
Diego, CA, USA). End-repair, A-tailing, adapter ligation,
and library amplification were performed during cDNA
library construction followed by cluster generation and
sequencing on the Illumina MiSeq platform in the Labora-
tory of Forest Genomics (Genome Research and Educa-
tion Center, Siberian Federal University, Krasnoyarsk,
Russia) using MiSeq Reagent Kit v2 (2 × 150 cycles).

Genome assembly
The de novo genome assembly was performed using
SPAdes 3.13.0 genome assembler (http://cab.spbu.ru/
software/spades) on high-performance computing (HPC)
system IBM × 3950 X6 with 96 CPU and 3 TB RAM
using an iterative genome assembly module for short
reads. K-mer values were automatically selected based
on read length and data type [41].

Gene annotation
The gene annotation of the A. borealis genome was
performed using BRAKER2 [42], which is a combination of
GeneMark-ET [43] and AUGUSTUS [44], that uses
genomic and RNA-Seq data to automatically generate full
gene structure annotations in novel genomes. AUGUSTUS
integrates the extrinsic evidence from protein homology
information into the prediction. There were no protein data
for A. borealis before this study, therefore protein se-
quences of a close relative A. ostoyae have been used [19].
The gene ontology (GO) functional annotation was car-

ried out using Blast2GO [45]. This program worked directly
with coding sequences in fasta format. First, the nucleotide
sequences homologues to the A. borealis sequences were
searched for in the BLAST database. Then, sequence map-
ping and annotation were carried out. In parallel, protein
domains were detected using InterProScan [46].

Repetitive element (RE) annotation
Repetitive sequences were identified initially using the
RepeatModeler program designed to perform de novo
search [47]. The additional classification of RE sequences
was done using TEclass program [48].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-06964-6.

Additional file 1: Figure S1. GO distribution of coding sequences
found in the Armillaria borealis genome assembly at the biological
processes (BP) level based on the GO functional annotation.

Additional file 2: Figure S2. GO distribution of coding sequences
found in the Armillaria borealis genome assembly at the molecular
function (MF) level based on the GO functional annotation.

Additional file 3: Figure S3. GO distribution of coding sequences
found in the Armillaria borealis genome assembly at the cellular
components (CC) level based on the GO functional annotation.
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