Satellite data in thermal range for natural and technogenic ecosystems monitoring : научное издание

Описание

Тип публикации: статья из журнала

Год издания: 2021

Идентификатор DOI: 10.1051/e3sconf/202133302017

Аннотация: <jats:p>A method for recovery monitoring in post-fire and post-technogenic landscapes was proposed based on satellite data in a wide spectral range, including the infrared band data. A decrease in the spectral surface albedo in post-fire areas, caused by the destruction of on-ground vegetation, provokes excessive heating of the surПоказать полностьюface and upper soil layer. Surface thermal anomalies were evaluated under conditions of changes in the heat-insulating properties of vegetation and ground cover. The relative temperature anomalies in post-fire plots (overestimation up to 30% compared to non-disturbed territory) are typical for permafrost conditions of Siberia. Similar process was recorded for both natural (post-fire) and post-technogenic landscapes. Within 22 years after the fire, thermal insulation properties of the vegetation cover were restored. Thus, the relative temperature anomaly (of 3±1%) has reached the background value. In post-technogenic plots, conditions are more “contrast” compared to the background, and restoration of the thermal regime takes significantly longer (>60 years). “Neo-technogenic ecosystems” with specific soil thermal regimes compared to the background ones are formed both for reclaimed and for non-reclaimed post-technogenic plots. On average, surface temperature has overestimated at least by 10–15% in post-technogenic plots compared to non-disturbed territory.</jats:p>

Ссылки на полный текст

Издание

Журнал: E3S Web of Conferences

Выпуск журнала: Т. 333

Номера страниц: 02017

ISSN журнала: 25550403

Место издания: Les Ulis

Издатель: EDP Sciences - Web of Conferences

Персоны

Вхождение в базы данных