Тип публикации: статья из журнала
Год издания: 2004
Идентификатор DOI: 10.1007/s00209-003-0612-1
Аннотация: The classical Lefschetz fixed point formula expresses the number of fixed points of a continuous map f : M-->M in terms of the transformation induced by f on the cohomology of M. In 1966 Atiyah and Bott extended this formula to elliptic complexes over a compact closed manifold. In particular, they presented a holomorphic Lefschetz Показать полностьюformula for compact complex manifolds without boundary, a result, in the framework of algebraic geometry due to Eichler (1957) for holomorphic curves. On compact complex manifolds with boundary the Dolbeault complex is not elliptic, hence the Atiyah-Bott theory is no longer applicable. To get rid of the difficulties related to the boundary behaviour of the Dolbeault cohomology, Donelli and Fefferman (1986) derived a fixed point formula for the Bergman metric. The purpose of this paper is to present a holomorphic Lefschetz formula on a strictly convex domain in C-n, n>1.
Журнал: Mathematische Zeitschrift
Выпуск журнала: Vol. 246, Is. 4
Номера страниц: 769-794
ISSN журнала: 00255874
Место издания: New York
Издатель: Springer-Verlag