Тип публикации: статья из журнала
Год издания: 2012
Идентификатор DOI: 10.1029/2012JA017621
Аннотация: Using idealized models of the magnetosheath and magnetosphere magnetic fields, plasma densities, and plasma flow, we test for the steady state viability of processes mediating the interaction between the solar wind and the Jovian magnetosphere. The magnetopause is modeled as an asymmetric paraboloid with variable asymmetry. The subПоказать полностьюsolar standoff of the magnetopause has been shown to exhibit a bimodal probability distribution (Joy et al., 2002). Only the expanded magnetopause is considered, with a standoff of similar to 90 R-J. We test where on the magnetopause surface large-scale reconnection may be affected by either a shear flow or diamagnetic drift due to a pressure gradient across the magnetopause boundary. We also test for the onset of the Kelvin-Helmholtz instability. We find that reconnection is inhibited on the dawn flank due to the large shear flows in this region, regardless of magnetopause shape or interplanetary magnetic field orientation. The presence of a high energy plasma population in the magnetosphere may inhibit reconnection over much of the magnetopause area, except when the fields are antiparallel. Additionally, most of the dawn flank of the magnetopause is Kelvin-Helmholtz unstable, regardless of magnetopause asymmetry; and the dusk flank tailward of the planet is Kelvin-Helmholtz unstable when the magnetopause is highly oblate.
Журнал: Journal of Geophysical Research-space Physics
Выпуск журнала: Vol. 117, № 7
ISSN журнала: 21699380
Место издания: WASHINGTON
Издатель: AMER GEOPHYSICAL UNION