Тип публикации: статья из журнала
Год издания: 2021
Идентификатор DOI: 10.5194/isprs-archives-xliv-2-w1-2021-99-2021
Аннотация: <jats:p>Abstract. In recent years computed tomography of the lungs has been the most common diagnostic procedure aimed at detection of the pathological changes associated with COVID-19. The study is aimed at the use of the developed algorithmic support in combination with texture (geometric) analysis to highlight a number of indicaПоказать полностьюtors characterizing the clinical state of the object of interest. Processing is aimed at the solution of a number of diagnostic tasks such as highlighting and contrasting the objects of interest, taking into account the color coding. Further, an assessment is performed according to the appropriate criteria in order to find out the nature of the changes and increase both the visualization of pathological changes and the accuracy of the X-ray diagnostic report. For these purposes, it is proposed to use preprocessing algorithms for a series of images in dynamics. Segmentation of the lungs and areas of possible pathology are performed using wavelet transform and Otsu threshold value. Delta-maps and maps obtained using Shearlet transform with contrasting color coding are used as a means of visualization and selection of features (markers). The analysis of the experimental and clinical material carried out in the work shows the effectiveness of the proposed combination of methods for studying of the variability of the internal geometric features (markers) of the object of interest in the images. </jats:p>
Журнал: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Выпуск журнала: Т. XLIV-2/W1-2021
Номера страниц: 99-105
ISSN журнала: 16821750
Место издания: Berlin
Издатель: International Society of Photogrammetry and Remote Sensing (ISPRS)