Achieving Ultra-Broadband Sunlight-Like Emission in Single-Phase Phosphors: The Interplay of Structure and Luminescence

Описание

Тип публикации: статья из журнала

Год издания: 2024

Идентификатор DOI: 10.1002/adma.202406164

Аннотация: <jats:title>Abstract</jats:title><jats:p>The quest for artificial light sources mimicking sunlight has been a long-standing endeavor, particularly for applications in anticounterfeiting, agriculture, and color hue detection. Conventional sunlight simulators are often cost-prohibitive and bulky. Therefore, the development of a serieПоказать полностьюs of single-phase phosphors Ca<jats:sub>9</jats:sub>LiMg<jats:sub>1-x</jats:sub>Al<jats:sub>2x/3</jats:sub>(PO<jats:sub>4</jats:sub>)<jats:sub>7</jats:sub>:0.1Eu<jats:sup>2+</jats:sup> (x = 0-0.75) with sunlight-like emission represents a welcome step towards compact and economical light source alternatives. The phosphors are obtained by an original heterovalent substitution method and emit a broad spectrum spanning from violet to deep red. Notably, the phosphor with <jats:italic>x</jats:italic> = 0.5 exhibits an impressive full width at half-maximum of 330 nm. A synergistic interplay of experimental investigations and theory unveils the mechanism behind sunlight-like emission due to the local structural perturbations introduced by the heterovalent substitution of Al<jats:sup>3+</jats:sup> for Mg<jats:sup>2+</jats:sup>, leading to a varied distribution of Eu<jats:sup>2+</jats:sup> within the lattice. Subsequent characterization of a series of organic dyes combining absorption spectroscopy with convolutional neural network analysis convincingly demonstrates the potential of this phosphor in portable photodetection devices. Broad-spectrum light source testing empowers the model to precisely differentiate dye patterns. This points to the phosphor being ideal for mimicking sunlight. Beyond this demonstrated application, the phosphor's utility is envisioned in other relevant domains, including visible light communication and smart agriculture.</jats:p>

Ссылки на полный текст

Издание

Журнал: Advanced Materials

ISSN журнала: 09359648

Издатель: Wiley - VCH Verlag GmbH &amp; CO. KGaA

Персоны

  • Liu Shuifu (College of Materials Xiamen University Xiamen 361005 P. R. China)
  • Li Liyi (School of Chemical Engineering and Technology/School of Marine Sciences Sun Yat-sen University Zhuhai 519082 P. R. China)
  • Qin Xinghui (School of Chemical Engineering and Technology/School of Marine Sciences Sun Yat-sen University Zhuhai 519082 P. R. China)
  • Du Rongkai (School of Chemical Engineering and Technology/School of Marine Sciences Sun Yat-sen University Zhuhai 519082 P. R. China)
  • Sun Yifan (School of Chemical Engineering and Technology/School of Marine Sciences Sun Yat-sen University Zhuhai 519082 P. R. China)
  • Xie Shixing (School of Chemical Engineering and Technology/School of Marine Sciences Sun Yat-sen University Zhuhai 519082 P. R. China)
  • Wang Jiaqi (School of Chemical Engineering and Technology/School of Marine Sciences Sun Yat-sen University Zhuhai 519082 P. R. China)
  • Molokeev Maxim S. (International Research Center of Spectroscopy and Quantum Chemistry-IRC SQC Siberian Federal University 79 Svobodny Ave Krasnoyarsk 660041 Russia)
  • Xi Shibo (Institute of Sustainability for Chemicals Energy and Environment (ISCE2) Agency for Science Technology and Research (A*STAR) 1 Pesek Road Jurong Island 627833 Singapore)
  • Bünzli Jean-Claude G. (Institute of Chemical Sciences and Engineering Swiss Federal Institute of Technology Lausanne (EPFL) Lausanne Switzerland)
  • Zhou Lei (School of Chemical Engineering and Technology/School of Marine Sciences Sun Yat-sen University Zhuhai 519082 P. R. China)
  • Wu Mingmei (School of Chemical Engineering and Technology/School of Marine Sciences Sun Yat-sen University Zhuhai 519082 P. R. China)

Вхождение в базы данных