Тип публикации: статья из журнала
Год издания: 2016
Идентификатор DOI: 10.1134/S0006350916020111
Ключевые слова: denaturation, dielectric relaxation, fluorescence lifetime, tertiary protein structure, tryptophan
Аннотация: Tryptophan fluorescence lifetimes were analyzed for three proteins: human serum albumin, bovine serum albumin, and bacterial luciferase, which contain one, two, and seven tryptophan residues, respectively. For all of the proteins, the fluorescence decays were fitted by three lifetimes: ?1 = 6–7 ns, ?2 = 2.0–2.3 ns, and ?3 ? 0.1 ns Показать полностью(the native state), and ?1 = 4.4–4.6 ns, ?2 = 1.7–1.8 ns, and ?3 ? 0.1 ns (the denatured state). Corresponding decay-associated spectra had similar peak wavelengths and spectrum half-widths both in the native state (??1max = 342 nm, ??2max = 328 nm, and ??3max = 315 nm), and in the denatured state (??1max = 350 nm, ??2max= 343 nm, and ??3max= 317 nm). The differences in the steady-state spectra of the studied proteins were accounted for the individual ratio of the lifetime component contributions. The lifetime components were compared with a classification of tryptophan residues in the structure of these proteins within the discrete states model. © 2016, Pleiades Publishing, Inc.
Журнал: Biophysics (Russian Federation)
Выпуск журнала: Vol. 61, Is. 2
Номера страниц: 193-199