Тип публикации: статья из журнала
Год издания: 2024
Идентификатор DOI: 10.1007/jhep05(2024)062
Аннотация: <jats:title>A<jats:sc>bstract</jats:sc> </jats:title><jats:p>We consider the classification of supersymmetric black hole solutions to five-dimensional STU gauged supergravity that admit torus symmetry. This reduces to a problem in toric Kähler geometry on the base space. We introduce the class of separable toric Kähler surfaces thaПоказать полностьюt unify product-toric, Calabi-toric and orthotoric Kähler surfaces, together with an associated class of separable 2-forms. We prove that any supersymmetric toric solution that is timelike, with a separable Kähler base space and Maxwell fields, outside a horizon with a compact (locally) spherical cross-section, must be locally isometric to the known black hole or its near-horizon geometry. An essential part of the proof is a near-horizon analysis which shows that the only possible separable Kähler base space is Calabi-toric. In particular, this also implies that our previous black hole uniqueness theorem for minimal gauged supergravity applies to the larger class of separable Kähler base spaces.</jats:p>
Журнал: Journal of High Energy Physics
Выпуск журнала: Т. 2024, № 5
Номера страниц: 62
ISSN журнала: 11266708
Издатель: Institute of Physics and IOP Publishing Limited