Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций
Конференция: Hybrid Methods of Modeling and Optimization in Complex Systems (HMMOCS-II-2023); Krasnoyarsk; Krasnoyarsk
Год издания: 2024
Идентификатор DOI: 10.1051/itmconf/20245903017
Аннотация: Abstract. The paper proposes a binary classification model designed to analyze electroencephalograms data to detecting pathologies associated with epilepsy. The model is based on the Convolutional Neural Network. As input data for the neural network, images obtained by transforming the values of the original electroencephalograms tПоказать полностьюime series based on the Gramian Angular Field matrix were used. The model was trained on data from the Temple University Hospital electroencephalograms Seizure Corpus open data source. The proposed model demonstrated high performance metrics: accuracy - 91%, precision - 92%, recall - 95%, F1-0.93.
Журнал: Hybrid Methods of Modeling and Optimization in Complex Systems (HMMOCS-II-2023)
Номера страниц: 3017
Место издания: Krasnoyarsk