A comparative study of state-of-the-art multi-objective optimization algorithms : доклад, тезисы доклада

Описание

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: Hybrid Methods of Modeling and Optimization in Complex Systems (HMMOCS-II-2023); Krasnoyarsk; Krasnoyarsk

Год издания: 2024

Идентификатор DOI: 10.1051/itmconf/20245902024

Аннотация: With the development of intelligent algorithms, multi-objective optimization problems are increasingly showing a significant role in various fields. In this paper, we used four multi-objective optimization algorithms and tested them on six ZDT standard test problems. Conducted experiments to analyse the optimization effects of the Показать полностьюalgorithms and determine the strengths and weaknesses of each. These analyses help to identify the most appropriate optimization algorithm for a given problem.

Ссылки на полный текст

Издание

Журнал: Hybrid Methods of Modeling and Optimization in Complex Systems (HMMOCS-II-2023)

Номера страниц: 2024

Место издания: Krasnoyarsk

Персоны

  • Li Jiawei (Siberian Federal University, Institute of Space and Information Technology)
  • Sopov Evgenii (Reshetnev Siberian State University of Science and Technology, Institute of Informatics and Telecommunications)

Вхождение в базы данных