Перевод названия: On graphs with vertices of two colors and groups with 3-transpositions
Тип публикации: статья из журнала
Год издания: 2016
Ключевые слова: labeled graph, graph coloring, generating function, Coxeter graph, group with 3-transpositions, помеченный граф, раскраска графа, производящая функция, граф Кокстера, группа с 3-транспозициями
Аннотация: Рассматриваются помеченные неориентированные графы без петель и кратных ребер с вершинами, окрашенными в два цвета. Раскраска графа $\Gamma_n$ называется нечетносвязной, если после удаления вершин первого цвета (и инцидентных им ребер) граф распадается на нечетное число связных компонент. Для определенных серий вложенных друг в друПоказать полностьюга графов $\Gamma_n$ найдена общая формула числа $t_n$ нечетносвязных раскрасок, зависящая от двух параметров. В случаях, когда два графа серии могут быть интепретированы как графы Кокстера подходящих групп с 3-транспозициями, получены конкретные формулы для чисел $t_n$. We consider labeled undirected graphs without loops or multiple edges with vertices of two colors. A coloring of a graph $\Gamma_n$ is called odd-connected if the removal of vertices of the first color produces an odd number of connected components. A general formula for the number $t_n$ of odd-connected colorings is found for certain families of embedded graphs $\Gamma_n$. The formula depends on two parameters. In the cases where two graphs in a family can be interpreted as Coxeter graphs for certain groups with 3-transpositions, specific formulas for the numbers $t_n$ are found.
Журнал: Труды института математики и механики УрО РАН
Выпуск журнала: Т. 22, № 1
Номера страниц: 257-262
ISSN журнала: 01344889
Место издания: Екатеринбург
Издатель: Федеральное государственное бюджетное учреждение науки Институт математики и механики им. Н.Н. Красовского Уральского отделения Российской академии наук