Тип публикации: статья из журнала
Год издания: 2013
Идентификатор DOI: 10.1093/jigpal/jzs038
Ключевые слова: Modal logics, unification, most general unifiers, best unifiers, admissible rules
Аннотация: In this article we study and solve some open problem of unification for formulas with coefficients (meta-variables) in transitive modal logics. The role of coefficients is played by propositional letters which are constants (which any unifier lets intact). We solve this problem affirmatively: we find an algorithm which constructs aПоказать полностьюfinite set of the best unifiers for any unifiable formula with coefficients. This algorithm works for all transitive modal logics satisfying special general conditions. These conditions hold, in particular, for modal logics K4, S4, Grz and GL, so our results are true for these important logics. In terms of algebraic logic (or universal algebra), we solve the problem of finding solutions for equations in the free modal algebras in the signature extended by constants for free variables.
Журнал: LOGIC JOURNAL OF THE IGPL
Выпуск журнала: Vol. 21, Is. 2
Номера страниц: 205-215
ISSN журнала: 13670751
Место издания: OXFORD
Издатель: OXFORD UNIV PRESS