Тип публикации: статья из журнала
Год издания: 2022
Идентификатор DOI: 10.33048/semi.2022.19.008
Ключевые слова: summation of functions, euler-maclaurin formula, borel transform of power series
Аннотация: The aim of the paper is to study the problem of summation of functions of a discrete variable on integer points in a rational parallelepiped. Our method is based on Borel's transform of power series. Integral representation for discrete antiderivative and a new variant of the Euler-Maclaurin formula are described. Consequently new Показать полностьюidentities satisfied by Bernoulli's polynomials are obtained. The aim of the paper is to study the problem of summation of functions of a discrete variable on integer points in a rational parallelepiped. Our method is based on Borel's transform of power series. Integral representation for discrete antiderivative and a new variant of the Euler- Maclaurin formula are described. Consequently new identities satisfied by Bernoulli's polynomials are obtained. © 2022, Siberian Electronic Mathematical Reports. All rights reserved.
Журнал: SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA
Выпуск журнала: Vol. 19, Is. 1
Номера страниц: 91-100
ISSN журнала: 18133304
Место издания: NOVOSIBIRSK
Издатель: SOBOLEV INST MATHEMATICS