Selective Separation of Singly Charged Chloride and Dihydrogen Phosphate Anions by Electrobaromembrane Method with Nanoporous Membranes : научное издание

Описание

Тип публикации: статья из журнала

Год издания: 2023

Идентификатор DOI: 10.3390/membranes13050455

Ключевые слова: ion separation, highly selective separation, phosphate, electrobaromembrane separation, countercurrent electromigration, nanoporous membranes

Аннотация: <jats:p>The entrance of even a small amount of phosphorus compounds into natural waters leads to global problems that require the use of modern purification technologies. This paper presents the results of testing a hybrid electrobaromembrane (EBM) method for the selective separation of Cl− (always present in phosphorus-containing Показать полностьюwaters) and H2PO4− anions. Separated ions of the same charge sign move in an electric field through the pores of a nanoporous membrane to the corresponding electrode, while a commensurate counter-convective flow in the pores is created by a pressure drop across the membrane. It has been shown that EBM technology provides high fluxes of ions being separated across the membrane as well as a high selectivity coefficient compared to other membrane methods. During the processing of solution containing 0.05 M NaCl and 0.05 M NaH2PO4, the flux of phosphates through a track-etched membrane can reach 0.29 mol/(m2×h). Another possibility for separation is the EBM extraction of chlorides from the solution. Its flux can reach 0.40 mol/(m2×h) through the track-etched membrane and 0.33 mol/(m2×h) through a porous aluminum membrane. The separation efficiency can be very high by using both the porous anodic alumina membrane with positive fixed charges and the track-etched membrane with negative fixed charges due to the possibility of directing the fluxes of separated ions in opposite sides.</jats:p>

Ссылки на полный текст

Издание

Журнал: Membranes

Выпуск журнала: Т.13, 5

Номера страниц: 455

ISSN журнала: 20770375

Персоны

  • Butylskii Dmitrii (Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia)
  • Troitskiy Vasiliy (Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia)
  • Chuprynina Daria (Department of Analytical Chemistry, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia)
  • Kharchenko Ivan (Institute of Computational Modeling SB RAS, 50-44 Akademgorodok, 660036 Krasnoyarsk, Russia)
  • Ryzhkov Ilya (Siberian Federal University, 79 Svobodny, 660041 Krasnoyarsk, Russia)
  • Apel Pavel (Joint Institute for Nuclear Research, 6 Joliot-Curie St., 141980 Dubna, Russia)
  • Pismenskaya Natalia (Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia)
  • Nikonenko Victor (Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia)

Вхождение в базы данных