Тип публикации: статья из журнала
Год издания: 2022
Идентификатор DOI: 10.3390/a15100348
Ключевые слова: cuda, generalized cholesky factorization, gpu, moore–penrose generalized inverse, strassen’s matrix inversion
Аннотация: In this work, we consider the problem of calculating the generalized Moore–Penrose inverse, which is essential in many applications of graph theory. We propose an algorithm for the massively parallel systems based on the recursive algorithm for the generalized Moore–Penrose inverse, the generalized Cholesky factorization, and StrasПоказать полностьюsen’s matrix inversion algorithm. Computational experiments with our new algorithm based on a parallel computing architecture known as the Compute Unified Device Architecture (CUDA) on a graphic processing unit (GPU) show the significant advantages of using GPU for large matrices (with millions of elements) in comparison with the CPU implementation from the OpenCV library (Intel, Santa Clara, CA, USA). © 2022 by the authors.
Журнал: Algorithms
Выпуск журнала: Vol. 15, Is. 10
Номера страниц: 348
ISSN журнала: 19994893
Издатель: MDPI