Electronic Structure and Minimal Models for Flat and Corrugated CuO Monolayers: An Ab Initio Study : научное издание

Описание

Тип публикации: статья из журнала

Год издания: 2023

Идентификатор DOI: 10.3390/ma16020658

Аннотация: <jats:p>CuO atomic thin monolayer (mlCuO) was synthesized recently. Interest in the mlCuO is based on its close relation to CuO2 layers in typical high temperature cuprate superconductors. Here, we present the calculation of the band structure, the density of states and the Fermi surface of the flat mlCuO as well as the corrugated Показать полностьюmlCuO within the density functional theory (DFT) in the generalized gradient approximation (GGA). In the flat mlCuO, the Cu-3dx2−y2 band crosses the Fermi level, while the Cu-3dxz,yz hybridized band is located just below it. The corrugation leads to a significant shift of the Cu-3dxz,yz hybridized band down in energy and a degeneracy lifting for the Cu-3dx2−y2 bands. Corrugated mlCuO is more energetically favorable than the flat one. In addition, we compared the electronic structure of the considered CuO monolayers with bulk CuO systems. We also investigated the influence of a crystal lattice strain (which might occur on some interfaces) on the electronic structure of both mlCuO and determined the critical strains of topological Lifshitz transitions. Finally, we proposed a number of different minimal models for the flat and the corrugated mlCuO using projections onto different Wannier functions basis sets and obtained the corresponding Hamiltonian matrix elements in a real space.</jats:p>

Ссылки на полный текст

Издание

Журнал: Materials

Выпуск журнала: Т.16, 2

Номера страниц: 658

ISSN журнала: 19961944

Место издания: Basel

Персоны

Вхождение в базы данных