Тип публикации: статья из журнала
Год издания: 2023
Идентификатор DOI: 10.3390/inorganics11110434
Ключевые слова: rare earths, lanthanum, sulfate, crystal chemistry, thermodynamics, chemical kinetics, dielectrics
Аннотация: <jats:p>A new polymorphic modification of lanthanum sulfate was obtained by thermal dehydration of the respective nonahydrate. According to powder X-ray diffraction, it was established that β-La2(SO4)3 crystallized in the C2/c space group of the monoclinic system with the KTh2(PO4)3 structure type (a = 17.6923(9), b = 6.9102(4), c Показать полностью= 8.3990(5) Å, β = 100.321(3)°, and V = 1010.22(9) Å3). Temperature dependency studies of the unit cell parameters indicated almost zero expansion along the a direction in the temperature range of 300–450 K. Presumably, this occurred due to stretching of the [LaO9]n chains along the c direction, which occurred without a significant alteration in the layer thickness over the a direction. A systematic study of the formation and destruction processes of the lanthanum sulfates under heating was carried out. In particular, the decisive impact of the chemical composition and formation energy of compounds on the thermodynamic and kinetic parameters of the processes was established. DFT calculations showed β-La2(SO4)3 to be a dielectric material with a bandgap of more than 6.4 eV. The processing of β-La2(SO4)3 with the Kubelka–Munk function exhibited low values below 6.4 eV, which indicated a fundamental absorption edge above this energy that was consistent with LDA calculations. The Raman and infrared measurements of β-La2(SO4)3 were in accordance with the calculated spectra, indicating that the obtained crystal parameters represented a reliable structure.</jats:p>
Журнал: Inorganics
Выпуск журнала: Т.11, №11
Номера страниц: 434
ISSN журнала: 23046740