Квазиполя и проективные плоскости трансляций малых четных порядков

Описание

Перевод названия: Quasifields and Translation Planes of the Smallest Even Order

Тип публикации: статья из журнала

Год издания: 2014

Ключевые слова: плоскость трансляций, регулярное множество, квазиполе, полуполе, translation planes, spread set, Quasifield, semifield, order of element of loop, порядок элемента лупы

Аннотация: Построения различных классов конечных недезарговых плоскостей трансляций и квазиполей тесно связаны и с середины прошлого века систематически опираются на компьютерные вычисления. Мы находим структурное описание полуполей порядка 32 и квазиполей порядка 16, соответствующих плоскостей трансляций. Известно, что проективные плоскости Показать полностьютрансляций любого примарного порядка pn с простым p удается построить, координатизируя их линейным пространством W размеpности n над простым полем из p элементов и характеризуя регулярным множеством, позволяющим снабдить W структурой квазиполя (возможно наперед заданным). Плоскость называют полуполевой, если W - полуполе; в случае поля W плоскость дезаргова. Изоморфность полуполевых плоскостей равносильна изотопности их полуполей. Строение квазиполей порядка pn, в отличие от конечных полей, изучено мало даже при небольших простых или близких к простым n. Клейнфилд в 1960 году классифицировал, с точностью до изоморфизмов, квазиполя с ядром порядка 4 и все полуполя порядка 16. Классификацию всех плоскостей трансляций порядка 16 и 32 позднее завершили Демпволф и др. С помощью регулярных множеств недезарговых плоскостей удается построить 5 полуполей порядка 32 и 7 квазиполей порядка 16, исчерпывающих, с точностью до изотопизмов, все полуполя порядка 32 и, соответственно, квазиполя порядка 16. Основные результаты статьи перечисляют для них в случае полуполей (в случае квазиполей частично) ядра и все подполя, а также введенные порядки элементов и спектры соответствующих луп. Constructs of different classes of finite non-Desargues translation planes and quasifields closely related. It used by computer calculations since the middle of last century. We study semifields of order 32 and quasifields of order 16 of corresponding translation planes. It is known that translation planes of any order pn for a prime p can be constructed by using a coordinatizing set W of order n over the field of order p. By using a spread set we providing W of structure of quasifield. The plane is set to be a semifield plane if W is a semifield. The plane is Desargues if W is a field. It is well-known that semifield planes are isomorphic if and only if their semifields are isotopic. Structure of quasifields of order pn has been studied a few, even for small n. In 1960 Kleinfeld classified quasifields of order 16 with kernel of order 4 and all semifields of order 16 up to isomorphisms. Later Dempwolf and other completed the classification of all translation planes of order 16 and 32. We construct 5 semifields of order 32 and 7 quasifields of order 16 of non-Desargues planes by using their spread sets. For these semifields and for these quasifields (partially) our main results list for them introduced orders of all non-zero elements and all subfields.

Ссылки на полный текст

Издание

Журнал: Известия Иркутского государственного университета. Серия: Математика

Выпуск журнала: Т. 7

Номера страниц: 141-159

ISSN журнала: 19977670

Место издания: Иркутск

Издатель: федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский государственный университет"

Персоны

  • Штуккерт Полина Константиновна (Сибирский федеральный университет)

Вхождение в базы данных