Тип публикации: статья из журнала
Год издания: 2022
Идентификатор DOI: 10.3390/math10244666
Аннотация: <jats:p>This study proposes a dual-population algorithmic scheme for differential evolution and specific mutation strategy. The first population contains the newest individuals, and is continuously updated, whereas the other keeps the top individuals throughout the whole search process. The proposed mutation strategy combines inforПоказать полностьюmation from both populations. The proposed L-NTADE algorithm (Linear population size reduction Newest and Top Adaptive Differential Evolution) follows the L-SHADE approach by utilizing its parameter adaptation scheme and linear population size reduction. The L-NTADE is tested on two benchmark sets, namely CEC 2017 and CEC 2022, and demonstrates highly competitive results compared to the state-of-the-art methods. The deeper analysis of the results shows that it displays different properties compared to known DE schemes. The simplicity of L-NTADE coupled with its high efficiency make it a promising approach.</jats:p>
Журнал: Mathematics
Выпуск журнала: Т. 10, № 24
Номера страниц: 4666
ISSN журнала: 22277390