Two Finite Volume Schemes for Advection Equation

Описание

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: 13th International Conference on Mesh Methods for Boundary-Value Problems and Applications, 2020

Год издания: 2022

Идентификатор DOI: 10.1007/978-3-030-87809-2_41

Ключевые слова: advection equation, approximation, convergence, finite volume method, gauss-ostrogradsky theorem

Аннотация: Two finite volume schemes for two-dimensional advection equation are compared. First one is based on Gauss-Ostrogradsky theorem for volume bounded by a small rectangle at upper time level, four sides formed by characteristic trajectories issued out backward in time from boundary of this rectangle, and curvilinear quadrangle carved Показать полностьюby these trajectories at the previous time level. The curvilinear quadrangle at the previous time level is approximated by straight-sided quadrangle. The solution is sought in the class of piecewise constant functions on a rectangular grid. The substantiation of the first order of approximation and the convergence for the obtained grid problem is carried out. In the second scheme, two-dimensional advection operator is decomposed in two one-dimensional operators. The justifying the approximation and the convergence for this scheme is obtained by a simple generalization of these properties for one-dimensional discrete operators. Comparison of algorithmic realization of these schemes demonstrates the different properties. The first one is more complicated for assembling but is more appropriate for implementation to the problems with high velocities. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Ссылки на полный текст

Издание

Журнал: Lecture Notes in Computational Science and Engineering

Выпуск журнала: Vol. 141

Номера страниц: 545-561

ISSN журнала: 14397358

Издатель: Springer Science and Business Media Deutschland GmbH

Персоны

  • Vyatkin A.V. (Institute of Computational Modeling SB RAS, Akademgorodok, Russian Federation)
  • Shaydurov V.V. (Institute of Computational Modeling SB RAS, Akademgorodok, Russian Federation, Siberian Federal University, Krasnoyarsk, Russian Federation)
  • Kuchunova E.V. (Institute of Computational Modeling SB RAS, Akademgorodok, Russian Federation, Siberian Federal University, Krasnoyarsk, Russian Federation)

Вхождение в базы данных