Тип публикации: статья из журнала
Год издания: 2022
Идентификатор DOI: 10.1088/1361-6382/aca193
Аннотация: <jats:title>Abstract</jats:title> <jats:p>We consider the classification of supersymmetric AdS<jats:sub>5</jats:sub> black hole solutions to minimal gauged supergravity that admit a torus symmetry. This problem reduces to finding a class of toric Kähler metrics on the base space, which in symplectic coordinates are determined by a Показать полностьюsymplectic potential. We derive the general form of the symplectic potential near any component of the horizon or axis of symmetry, which determines its singular part for any black hole solution in this class, including possible new solutions such as black lenses and multi-black holes. We find that the most general known black hole solution in this context, found by Chong, Cvetic, Lü and Pope (CCLP), is described by a remarkably simple symplectic potential. We prove that any supersymmetric and toric solution that is timelike outside a smooth horizon, with a Kähler base metric of Calabi type, must be the CCLP black hole solution or its near-horizon geometry.</jats:p>
Журнал: Classical and Quantum Gravity
Выпуск журнала: Т. 39, № 24
Номера страниц: 245006
ISSN журнала: 02649381
Издатель: Institute of Physics and IOP Publishing Limited