Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций
Конференция: ??9th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS'17; Albena, Bulgaria; Albena, Bulgaria
Год издания: 2017
Идентификатор DOI: 10.1063/1.5007407
Аннотация: The two-dimensional time-dependent Navier-Stokes equations are considered for a viscous incompressible fluid in a channel. On the outlet boundary, the modified “do nothing” condition is imposed. To construct a discrete analogue, we use the conforming finite element method in the combination with a semi-Lagrangian approach. The veloПоказать полностьюcity components are approximated by biquadratic elements and the pressure is approximated by bilinear elements on rectangles. To overcome the lack of conservation law of the classical semi-Lagrangian method, we propose its conservative version. To guarantee the energy conservation and the stability in the mean-square norm, we use the discrete analogue of the local integral balance between two neighboring time levels. A numerical experiment shows the convergence of the proposed numerical method.
Журнал: AIP CONFERENCE PROCEEDINGS
Выпуск журнала: 1895
Номера страниц: 110001-110001
Издатель: American Institute of Physics Inc.