Тип публикации: статья из журнала
Год издания: 2020
Идентификатор DOI: 10.1007/s10854-020-04382-8
Аннотация: The discovery of stable and highly sensitive up-conversion (UC) phosphors using the fluorescence intensity ratio (FIR) is a significant challenge in the field of optical temperature sensor. Er3+/Ho3+/Tm3+-doped LiYbMo2O8UC phosphors with excellent luminescence properties were successfully synthesized through a high-temperature soliПоказать полностьюd-state reaction, and the crystal structure and UC luminescence properties were discussed in detail. The UC process has been investigated by spectra pump power dependence and further explained via the energy level diagram. All emission processes about Er(3+)ions and Ho(3+)ions are two-photon processes and the blue emission process about Tm(3+)ions is a combination of two-photon process and three-photon process. Thermal sensing performances depended on FIR technology were estimated and the sensitivities of LiYb(1-x)Mo2O8:xLn(3+)included absolute sensitivity (S-a) and relative sensitivity (S-r) can produce particular change rules with the temperature, which can serve as excellent candidates for applications in optical temperature sensing. With the increase of temperature, the maximum values ofS(r)of LiYb1-xMo2O8:xLn(3+)are 1.16% K-1(0.05Er(3+)), 0.25% K-1(0.01Ho(3+)), and 0.51% K-1(0.01Tm(3+)), respectively. In addition, theS(a)value of LiYb0.95Mo2O8:0.05Er(3+)phosphor will reach the maximum (1.08% K-1) at 475 K, while the maximum values ofS(a)of LiYb0.99Mo2O8:0.01Ho(3+)and LiYb0.99Mo2O8:0.01Tm(3+)are 0.16% K-1, 0.14% K-1.
Журнал: JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS
Выпуск журнала: Vol. 31, Is. 21
Номера страниц: 18370-18380
ISSN журнала: 09574522
Место издания: DORDRECHT
Издатель: SPRINGER