Тип публикации: статья из журнала
Год издания: 2014
Идентификатор DOI: 10.1515/jip-2012-0065
Ключевые слова: Inverse problems for PDE; boundary value problems for second-order elliptic equations; local existence and uniqueness theorems; filtration, boundary value problems for second-order elliptic equations, filtration, Inverse problems for PDE, local existence and uniqueness theorems, Boundary conditions, Constant coefficients, Dirichlet boundary condition, Elliptic operator, Local existence and uniqueness, Positive real, Quasilinear elliptic equations, Second-order differential equation, Inverse problems
Аннотация: The identification of an unknown constant coefficient in the main term of the second order differential equation -kM(vertical bar u vertical bar(p-2)u) + g(x)u = f(x) with Dirichlet boundary condition is considered. The elliptic operator M is self-adjoint, p >= 2. The identification of k here is based on an integral boundary data. Показать полностьюThe local existence and uniqueness theorems for the inverse problem is proved in the class of the pairs involving a function u such that vertical bar u vertical bar(p-2)u is an element of W-2(2)(Omega) and a positive real number k.
Журнал: JOURNAL OF INVERSE AND ILL-POSED PROBLEMS
Выпуск журнала: Vol. 22, Is. 3
Номера страниц: 341-356
ISSN журнала: 09280219
Место издания: BERLIN
Издатель: WALTER DE GRUYTER GMBH