An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods


Тип публикации: статья из журнала

Год издания: 2012

Идентификатор DOI: 10.5194/bg-9-5323-2012

Ключевые слова: carbon budget, eddy covariance, forest inventory, global change, inversion layer, respiration, uncertainty analysis, upscaling, Belarus, Kazakhstan, Russian Federation, Ukraine

Аннотация: We determine the net land to atmosphere flux of carbon in Russia, including Ukraine, Belarus and Kazakhstan, using inventory-based, eddy covariance, and inversion methods. Our high boundary estimate is -342 TgC yr(-1) from the eddy covariance method, and this is close to the upper bounds of the inventory-based Land Ecosystem AssessПоказать полностьюment and inverse models estimates. A lower boundary estimate is provided at -1350 TgC yr(-1) from the inversion models. The average of the three methods is -613.5 TgC yr(-1). The methane emission is estimated separately at 41.4 Tg C yr(-1). These three methods agree well within their respective error bounds. There is thus good consistency between bottom-up and top-down methods. The forests of Russia primarily cause the net atmosphere to land flux (-692 TgC yr(-1) from the LEA. It remains however remarkable that the three methods provide such close estimates (-615, -662, -554 TgC yr(-1)) for net biome production (NBP), given the inherent uncertainties in all of the approaches. The lack of recent forest inventories, the few eddy covariance sites and associated uncertainty with upscaling and undersampling of concentrations for the inversions are among the prime causes of the uncertainty. The dynamic global vegetation models (DGVMs) suggest a much lower uptake at -91 TgC yr(-1), and we argue that this is caused by a high estimate of heterotrophic respiration compared to other methods.

Ссылки на полный текст



Выпуск журнала: Vol. 9, Is. 12

Номера страниц: 5323-5340

ISSN журнала: 17264170

Место издания: GOTTINGEN



  • Dolman A.J. (Vrije Univ Amsterdam, Dept Earth Sci, NL-1081 HV Amsterdam, Netherlands)
  • Shvidenko A. (Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria)
  • Schepaschenko D. (Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria)
  • Ciais P. (CEA CNRS UVSQ, IPSL LSCE, Ctr Etud Orme Merisiers, F-91191 Gif Sur Yvette, France)
  • Tchebakova N. (SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia; SIF SB RAS, Krasnoyarsk, Russia; Siberian Fed Univ, Krasnoyarsk, Russia)
  • Chen T. (Vrije Univ Amsterdam, Dept Earth Sci, NL-1081 HV Amsterdam, Netherlands)
  • van der Molen M.K. (Vrije Univ Amsterdam, Dept Earth Sci, NL-1081 HV Amsterdam, Netherlands; Wageningen Univ, Dept Meteorol & Air Qual, Wageningen, Netherlands)
  • Belelli Marchesini L. (Vrije Univ Amsterdam, Dept Earth Sci, NL-1081 HV Amsterdam, Netherlands)
  • Maximov T.C. (RAS, Inst Biol Problems Cryolithozone, Siberian Branch, Yakutsk, Russia)
  • Maksyutov S. (Center for Global Environmental Research, National Institute for Environmental Studies Onogawa, 16-2, Tsukuba, Ibaraki 305-8506, Japan )
  • Schulze E.-D. (Max Planck Institute for Biogeochemistry, Jena, Germany)