Год издания: 2018
Ключевые слова: компьютерная алгебра, алгоритмы компьютерной алгебры, теория групп, конечная группа, простая группа, группы близкие к конечным, представления конечных групп, локальные методы в теории представлени, групповое кольцо, полуцепное кольцо, насыщенность, классы сопряженности в конечных группах
Аннотация: Проект посвящен проблеме классификации алгебраических структур, таких как группы и групповые кольца.?Одним из главных инструментов алгебры является установление отношения эквивалентности на множестве объектов некоторого класса. Наряду с классическим понятием изоморфизма для различных алгебраических структур (группы, кольца, модули Показать полностьюи др.), также возможно определить другое содержание понятию отношение эквивалентности. Одновременно, в русле естественного развития науки, возникает необходимость наделения первоначальных базовых структур дополнительными свойствами, что неминуемо влечет усложнение исходных понятий отношения эквивалентности в их новых формулировках. На соединении различных разветвленных направлений развития фундаментальной математики возникают новые дисциплины, связанные со многими разделами математики. Теоретические результаты находят приложения в практически значимых областях, и в то же время, их появление зачастую мотивировано необходимостью улучшения вычислительных процессов, а также возможностью компьютерной проверки гипотез. При этом неизменно важной является проблема распознавания?исследуемых объектов как в фундаментальной, так и в прикладной математике, и возможность признания пары объектов идентичными (эквивалентными) касательно того набора характеристик, который определяется решаемой задачей. Такому анализу в зависимости от ситуации подвергаются алгебраические структуры, алгоритмы, графы, структуры на многообразиях, визуальные образы (последние относятся к проблеме распознавания образов и имеют огромное практическое значение) и многие другие объекты. Неоспоримо, что любое научное исследование нуждается в формулировке отношения эквивалентности на множестве рассматриваемых объектов или, иными словами, в классификации этих объектов. ?Компьютерная алгебра, создающая цементирующий фундамент данного проекта, является относительно новым направлением, возникшим при взаимодействии ряда давно сложившихся и тематически устоявшихся дисциплин фундаментальной математики (алгебры, алгебраической геометрии, многомерного комплексного анализа), а также, информатики как сферы применения. Одним из применений компьютерной алгебры в информатике является манипулирование многоуровневыми иерархическими структурами для оптимизации аналитических вычислений и распараллеливания процессов, находящихся на одном и том же уровне этой иерархической лестницы. ?Например, в функциональном программировании коммутативный анализ и алгебраические классификаторы на основе моноидов, групп и полугрупп в последние годы находят применение для распараллеливания задач машинного обучения и анализа больших данных.?В процессе проведения предполагаемых исследований для решения актуальных задач классификации планируется выделить и проанализировать общие фундаментальные и прикладные составляющие развития по следующим направлениям: ?1. Вычислительная теория групп. ?2. Теория представлений конечных групп.?Целью данного проекта является создание единой методологии для классификации алгебраических структур путём алгоритмического обобщения используемых в разных областях методов с привлечением и одновременным развитием средств современной компьютерной алгебры.