Gradient Neural Dynamics Based on Modified Error Function : доклад, тезисы доклада

Описание

Тип публикации: доклад, тезисы доклада, статья из сборника материалов конференций

Конференция: International Workshop “Hybrid methods of modeling and optimization in complex systems” (HMMOCS 2022); Krasnoyarsk; Krasnoyarsk

Год издания: 2022

Идентификатор DOI: 10.15405/epct.23021.31

Ключевые слова: Gradient neural network, generalized inverses, Moore-Penrose inverse, linear matrix equations

Аннотация: The present study is devoted to methods for the numerical solution to the system of equations AXB=D. In the case certain conditions are met, the classical gradient neural network (GNN) dynamics obtains fast convergence. However, if those conditions are not satisfied, solution to the equation does not exist and therefore the error fПоказать полностьюunction E(t):=AV(t)B-D cannot be equal to zero, which increases the CPU time required for the calculation. In this paper, the solution to the matrix equation AXB = D is studied using the novel Gradient Neural Network (GGNN) model, termed as GGNN(A,B,D). The GGNN model is developed using a gradient of the error matrix used in the development of the GNN model. The proposed method uses a novel objective function that is guaranteed to converge to zero, thus reducing the execution time of the Simulink implementation. The GGNN-based dynamical systems for computing generalized inverses are also discussed. The conducted computational experiments have shown the applicability and advantage of the developed method.

Ссылки на полный текст

Издание

Журнал: HYBRID METHODS OF MODELING AND OPTIMIZATION IN COMPLEX SYSTEMS

Номера страниц: 256-263

Место издания: London, United Kingdom

Издатель: European Proceedings

Персоны

  • Stanimirovic Predrag S. (Siberian Federal University)
  • Gerontitis Dimitrios (International Hellenic University)
  • Tesic Natasa (University of Novi Sad)
  • Kazakovtsev Vladimir L. (Siberian Federal University)
  • Stasiuk Vladislav (Siberian Federal University)
  • Cao Xinwei (Jiangnan University)

Вхождение в базы данных