VNS-Based Algorithms for the Centroid-Based Clustering Problem : научное издание

Описание

Тип публикации: статья из журнала

Год издания: 2019

Идентификатор DOI: 10.22190/FUMI1905957R

Ключевые слова: greedy heuristic, clustering problem, gpu, k-Means Problem, variable neighborhoods

Аннотация: The k-means algorithm with the corresponding problem formulation is one of the first methods that researchers use when solving a new automatic grouping (clus-tering) problem. Its improvement, modification and combination with other algorithms are described in the works of many researchers. In this research, we propose new al-gorithmsПоказать полностьюof the Greedy Heuristic Method, which use an idea of the search in variable neighborhoods for solving the classical cluster analysis problem, and allows us to obtain a more accurate and stable result of solving in comparison with the known algorithms. Our computational experiments show that the new algorithms allow us to obtain re-sults with better values of the objective function value (sum of squared distances) in comparison with classical algorithms such as k-means, j-means and genetic algorithms on various practically important datasets. In addition, we present the first results for the GPU realization of the Greedy Heuristic Method.

Ссылки на полный текст

Издание

Журнал: Facta Universitatis, Series: Mathematics and Informatics

Выпуск журнала: Т. 34, 5

Номера страниц: 957-972

ISSN журнала: 03529665

Место издания: Белград

Персоны

  • Rozhnov I.P. (Reshetnev Siberian State University of Science and Technology)
  • Orlov V.I.
  • Kazakovtsev L.A. (Reshetnev Siberian State University of Science and Technology)

Вхождение в базы данных