Тип публикации: статья из журнала
Год издания: 2022
Идентификатор DOI: 10.15593/perm.mech/2022.1.05
Ключевые слова: elasticity, composites, adjusted strength conditions, fictitious discrete models, multigrid finite elements, упругость, композиты, скорректированные условия прочности, фиктивные дискретные модели, многосеточные конечные элементы
Аннотация: Как известно, расчет на статическую прочность упругих композитных тел (КТ) сводится к нахождению максимальных эквивалентных напряжений для этих тел. Для анализа напряженного состояния КТ широко используется метод конечных элементов (МКЭ). Базовые дискретные модели (БМ), которые учитывают в рамках микроподхода неоднородную структуруПоказать полностьютел, имеют высокую размерность. Для понижения размерности дискретных моделей эффективно применяются многосеточные конечные элементы (МнКЭ). Однако существуют БМ КТ (например, БМ тел с микронеоднородной структурой), которые имеют такую высокую размерность, что реализация МКЭ для таких БМ с применением МнКЭ, в силу ограниченности ресурсов ЭВМ, затруднительна. Для решения данной проблемы здесь предлагается использовать фиктивные дискретные модели, размерности которых меньше размерности БМ КТ. В данной работе предлагается метод фиктивных дискретных моделей (МФДМ) для расчета на прочность упругих тел с неоднородной, микронеоднородной регулярной структурой. Предлагаемый метод реализуется с помощью МКЭ с применением МнКЭ и скорректированных условий прочности, которые учитывают погрешность приближенных решений. В основе метода лежит положение, что решения, отвечающие БМ КТ, мало отличаются от точных. Расчет КТ по МФДМ сводится к построению и расчету на прочность фиктивных дискретных моделей (ФМ), которые обладают следующими свойствами. ФМ отражают: форму, характерные размеры, крепление, нагружение и вид неоднородной структуры КТ, и распределение модулей упругости, отвечающее БМ КТ. Размерности ФМ меньше размерности БМ КТ. Последовательность, состоящая из ФМ, сходится к БМ, т.е. предельная ФМ совпадает с БМ. Сходимость такой последовательности обеспечивает равномерную сходимость максимальных эквивалентных напряжений ФМ к максимальному эквивалентному напряжению БМ. Рассматриваются два типа ФМ, первый тип - масштабированные ФМ, второй - ФМ с переменными характерными размерами. Расчеты показывают, что реализация МКЭ для ФМ с применением МнКЭ приводит к большой экономии ресурсов ЭВМ, что позволяет использовать МФДМ для тел с микронеоднородной регулярной структурой. Расчет на прочность КТ по МФДМ требует в раз меньше объема памяти ЭВМ, чем аналогичный расчет с использованием БМ КТ, и не содержит процедуру измельчения БМ. Применение скорректированных условий прочности позволяет использовать в расчетах КТ на прочность приближенные решения с большой погрешностью, что приводит к повышению эффективности МФДМ. Приведенный пример расчета на прочность балки с неоднородной регулярной волокнистой структурой по МФДМ показывает его высокую эффективность. As is known, the calculation of the static strength of elastic composite bodies (CB) is reduced to finding the maximum equivalent stresses for these bodies. The finite element method (FEM) is widely used for the analysis of the stress state of CB. The basic discrete models (BM), which take into account the inhomogeneous structure of bodies in the framework of a micro-approach, have a high dimension. To reduce the dimension of discrete models, multigrid finite elements (MgFE) are effectively used. However, there are BM CB (for example, BM bodies with a micro-homogeneous structure), which have such a high dimension that the implementation of FEM for such BM using MgFE, due to limited computer resources, is difficult. To solve this problem, it is proposed to use fictitious discrete models whose dimensions are less than the dimension of the BM CB. In this paper, we propose a method of fictitious discrete models (MFDM) for calculating the strength of elastic bodies with an inhomogeneous, micro-homogeneous regular structure. The proposed method is implemented using FEM with the use of MgFE and adjusted strength conditions that take into account the error of approximate solutions. The method is based on the position that the solutions that meet the BM CB differ little from the exact ones. The calculation of CB according to MFDM is reduced to the construction and calculation of the strength of fictitious discrete models (FM), which have the following properties. The FM reflects: the shape, characteristic dimensions, attachment, loading and type of the inhomogeneous structure of the CB, and the distribution of elastic modulus corresponding to the BM CB. The FM dimension is less than the BM dimension of the CB. The sequence consisting of FM converges to BM, i.e. the limiting FM coincides with BM. The convergence of such a sequence ensures uniform convergence of the maximum equivalent voltages of the FM to the maximum equivalent voltage of the BM. Two types of FM are considered. The first type of FM consists of scaled discrete models, the second type consists of FM with variable characteristic dimensions. Calculations show that the implementation of FEM for FM using MgFE leads to a large saving of computer resources, which allows the use of MFDM for bodies with a micro-homogeneous regular structure. The calculation of the strength of CB according to MFDM requires times less computer memory than a similar calculation using BM CB, and does not contain a procedure for grinding BM. The use of adjusted strength conditions allows us to use approximate solutions with a large error in the calculations of CB for strength, which leads to an increase in the efficiency of MFDM. The given example of calculating the strength of a beam with an inhomogeneous regular fibrous structure according to MFDM shows its high efficiency.
Журнал: Вестник Пермского национального исследовательского политехнического университета. Механика
Выпуск журнала: № 1
Номера страниц: 45-57
ISSN журнала: 22249893
Место издания: Пермь
Издатель: Пермский национальный исследовательский политехнический университет