Тип публикации: статья из журнала
Год издания: 2016
Идентификатор DOI: 10.1070/IM8211
Ключевые слова: hypergeometric system of equations, monodromy representation, monodromy reducibility, intertwining operator
Аннотация: We investigate the branching of solutions of holonomic bivariate Horn-type hypergeometric systems. Special attention is paid to invariant subspaces of Puiseux polynomial solutions. We mainly study Horn systems defined by simplicial configurations and Horn systems whose Ore-Sato polygons are either zonotopes or Minkowski sums of a tПоказать полностьюriangle and segments proportional to its sides. We prove a necessary and sufficient condition for the monodromy representation to be maximally reducible, that is, for the space of holomorphic solutions to split into a direct sum of one-dimensional invariant subspaces.
Журнал: IZVESTIYA MATHEMATICS
Выпуск журнала: Vol. 80, Is. 1
Номера страниц: 221-262
ISSN журнала: 10645632
Место издания: BRISTOL
Издатель: TURPION LTD