Multiple Strategies to Approach High-Efficiency Luminescence Controllable in Blue/Cyan/Green-Emitting Bi3+-Activated Phosphors

Описание

Тип публикации: статья из журнала

Год издания: 2022

Идентификатор DOI: 10.1021/acs.jpcc.2c02560

Аннотация: Cyan gap is a major block in achieving high-quality white light-emitting diodes (WLEDs). Hence, a novel cyan-emitting phosphor Sr2GdGaO5/0.02Bi3+with optical tuning performance is synthesized based on the local crystal field regulation strategy surrounding the luminescence center. With the substitution of Al3+for Ga3+, the photolumПоказать полностьюinescence (PL) spectra of Sr2GdGa1-xAlxO5/0.02Bi3+(0 ≤ x ≤ 1) phosphors adjust from cyan (466 nm) to blue (450 nm). Moreover, such a Ba2+doping adjusts the PL spectra of Sr2-xBaxGdGaO5/0.02Bi3+(0 ≤ x ≤ 0.5) phosphors from cyan (466 nm) to green (482 nm). These phenomena are contributed to the crystal field splitting and nephelauxetic effect. The energy transfer from Bi3+to Eu3+is realized by co-doping Bi3+and Eu3+ions in the A2GdBO5/Bi3+(A = Sr, Ba; B = Ga, Al) host materials, and two single-phase white phosphors Sr2GdGaO5/0.02Bi3+, 0.05Eu3+and Sr1.5Ba0.5GdGaO5/0.02Bi3+, 0.05Eu3+are obtained. Finally, a WLED with high color rendering index (Ra = 93.6) is prepared by using red/green/blue (RGB) phosphors and Sr2GdGaO5/0.02Bi3+phosphor, which is higher than that of the WLED prepared by RGB phosphors (Ra = 86.7), indicating that Sr2GdGaO5/0.02Bi3+phosphor can close the cyan gap. These results provide multiple strategies in achieving luminescence controllable and WLED. © 2022 American Chemical Society. All rights reserved.

Ссылки на полный текст

Издание

Журнал: Journal of Physical Chemistry C

Выпуск журнала: Vol. 126, Is. 21

Номера страниц: 9195-9206

ISSN журнала: 19327447

Издатель: American Chemical Society

Персоны

  • Gao P. (School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China, Hunan Optical Agriculture Engineering Technology Research Center, Changsha, 410128, China)
  • Li Q. (School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China, Hunan Optical Agriculture Engineering Technology Research Center, Changsha, 410128, China)
  • Li S. (School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China, Hunan Optical Agriculture Engineering Technology Research Center, Changsha, 410128, China)
  • Gai S. (Hunan Optical Agriculture Engineering Technology Research Center, Changsha, 410128, China, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China)
  • Li Y. (Hunan Optical Agriculture Engineering Technology Research Center, Changsha, 410128, China, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China)
  • Ma Y. (School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China, Hunan Optical Agriculture Engineering Technology Research Center, Changsha, 410128, China)
  • Zhang Z. (School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China, Hunan Optical Agriculture Engineering Technology Research Center, Changsha, 410128, China)
  • Molokeev M.S. (Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, 660036, Russian Federation, Siberian Federal University, Krasnoyarsk, 660041, Russian Federation)
  • Zhou Z. (School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China, Hunan Optical Agriculture Engineering Technology Research Center, Changsha, 410128, China)
  • Xia M. (School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China, Hunan Optical Agriculture Engineering Technology Research Center, Changsha, 410128, China)

Вхождение в базы данных