Тип публикации: статья из журнала
Год издания: 2020
Идентификатор DOI: 10.1134/S0965542520040156
Ключевые слова: dynamics, shock wave, elasticity, plasticity, granular medium, porous medium, thermodynamic consistency, variational inequality, shock-capturing method
Аннотация: Mathematical models of the dynamics of elastoplastic, granular, and porous media are reduced to variational inequalities for hyperbolic differential operators that are thermodynamically consistent in the sense of Godunov. On this basis, the concept of weak solutions with dissipative shock waves is introduced and a priori estimates Показать полностьюof smooth solutions in characteristic conoids of operators are constructed, which suggest the well-posedness of the formulation of the Cauchy problem and boundary value problems with dissipative boundary conditions. Additionally, efficient shock-capturing methods adapted to solution discontinuities are designed.
Журнал: COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS
Выпуск журнала: Vol. 60, Is. 4
Номера страниц: 723-736
ISSN журнала: 09655425
Место издания: MOSCOW
Издатель: PLEIADES PUBLISHING INC