Thermodynamic Consistency and Mathematical Well-Posedness in the Theory of Elastoplastic, Granular, and Porous Materials : научное издание

Описание

Тип публикации: статья из журнала

Год издания: 2020

Идентификатор DOI: 10.1134/S0965542520040156

Ключевые слова: dynamics, shock wave, elasticity, plasticity, granular medium, porous medium, thermodynamic consistency, variational inequality, shock-capturing method

Аннотация: Mathematical models of the dynamics of elastoplastic, granular, and porous media are reduced to variational inequalities for hyperbolic differential operators that are thermodynamically consistent in the sense of Godunov. On this basis, the concept of weak solutions with dissipative shock waves is introduced and a priori estimates Показать полностьюof smooth solutions in characteristic conoids of operators are constructed, which suggest the well-posedness of the formulation of the Cauchy problem and boundary value problems with dissipative boundary conditions. Additionally, efficient shock-capturing methods adapted to solution discontinuities are designed.

Ссылки на полный текст

Издание

Журнал: COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS

Выпуск журнала: Vol. 60, Is. 4

Номера страниц: 723-736

ISSN журнала: 09655425

Место издания: MOSCOW

Издатель: PLEIADES PUBLISHING INC

Персоны

  • Sadovskii V.M. (Russian Acad Sci, Siberian Branch, Inst Computat Modeling, Krasnoyarsk 660036, Russia)

Вхождение в базы данных