Перевод названия: СИСТЕМНЫЙ АНАЛИЗ ДИНАМИЧЕСКИХ ЗАДАЧ АНИЗОТРОПНОЙ ТЕОРИИ ПЛАСТИЧНОСТИ
Тип публикации: статья из журнала
Год издания: 2019
Ключевые слова: анизотропная пластичность, динамика, симметрии, точные решения, Anisotropic plasticity, dynamics, symmetries, exact solutions
Аннотация: Dynamic problems are the least studied area of plasticity theory. These problems arise in various fields of engineering and science, but the complexity of the original differential equations do not allow to develop accurate solutions and correctly solve numerical boundary value problems. This is even more typical of dynamic equatioПоказать полностьюns of anisotropic plasticity. Anisotropy reduces the group of symmetries allowed by the equations, and therefore narrows the number of invariant solutions. One-dimensional dynamic plasticity problems are well studied, but two-dimensional problems cause insurmountable mathematical difficulties due to the nonlinearity of the basic equations, even in the isotropic case. The study of the symmetries of the plasticity equations allowed us to find some exact solutions. The most known solution was found by B. D. Annin, who described the unsteady compression of a plastic layer made of isotropic material by rigid plates. Annin's solution is linear in two spatial variables, however, it includes arbitrary functions of time. Symmetries are also used in the proposed work. Point symmetries are first calculated for dynamic plasticity equations in the anisotropic case and are presented in the paper. The Lie algebra generated by the found symmetries appeared to be infinite-dimensional. This circumstance made it possible to apply the method of constructing new classes of nonstationary solutions. Symmetry can transform the exact solution of stationary dynamic equations in non-stationary solutions. The framed solutions include arbitrary functions and arbitrary constants. The outline of the article is as follows: according to the method of Lie group of point symmetries allowed by the equations of anisotropic plasticity is calculated. Two classes of new stationary invariant solutions are framed. These stationary solutions, by means of transformations generated by point symmetries, are transformed into new non-stationary solutions. In conclusion, a new self-similar solution of unsteady equations of anisotropic plasticity is framed; Annin's solution is generalized for the anisotropic case. The framed solutions can be used to describe the compression of plastic material between rigid plates, as well as to test programs, designed to solve anisotropic plastic problems. Динамические задачи - это наименее изученная область теории пластичности. Динамические задачи возникают в самых разных областях техники и науки, но сложность исходных дифференциальных уравнений не позволяет строить точные решения и корректно численно решать краевые задачи. Это еще в большей степени касается динамических уравнений анизотропной пластичности. Анизотропия уменьшает группу симметрий, допускаемую уравнениями, а, следовательно, и сужает количество инвариантных решений. Неплохо исследованы одномерные динамические задачи пластичности, но уже двумерные задачи вызывают непреодолимые математические сложности из-за нелинейности основных уравнений, даже в изотропном случае. Изучение симметрий уравнений пластичности позволило построить некоторые точные решения. Б. Д. Аннин построил наиболее известное решение, описывающее сжатие жесткими плитами пластического слоя из изотропного материала. Решение Аннина линейно по двум пространственным переменным, и в него входят произвольные функции времени. В предлагаемой работе также используются симметрии. В статье впервые вычислены точечные симметрии для динамических уравнений пластичности в анизотропном случае. Алгебра Ли, порождаемая найденными симметриями, оказалась бесконечномерной. Это обстоятельство дало возможность применить методику построения новых классов нестационарных решений. Симметрии позволяют преобразовать точные решения стационарных динамических уравнений в нестационарные решения. В построенные решения входят произвольные функции и произвольные постоянные. В статье по методике Ли-Овсяннникова вычисляется группа точечных симметрий, допускаемая уравнениями анизотропной пластичности. Строятся два класса новых стационарных инвариантных решений. Эти стационарные решения, с помощью преобразований, порождаемых точечными симметриями, преобразуются в новые нестационарные решения. В заключении работы построено новое автомодельное решение нестационарных уравнений анизотропной пластичности, а решение Аннина обобщено на анизотропный случай. Приведенные решения можно использовать для описания сжатия пластического материала между жесткими плитами, а также для тестирования программ, предназначенных для исследования анизотропных пластических задач.
Журнал: Сибирский журнал науки и технологий
Выпуск журнала: Т. 20, № 3
Номера страниц: 320-326
ISSN журнала: 25876066
Место издания: Красноярск
Издатель: Федеральное государственное бюджетное образовательное учреждение высшего образования Сибирский государственный университет науки и технологий имени академика М.Ф. Решетнева